Application of Physics-Informed Neural Networks in Removing Telescope Beam Effects

Shulei Ni, Yisheng Qiu, Yunchuan Chen, Zihao Song, Hao Chen, Xuejian Jiang, Donghui Quan, Huaxi Chen
{"title":"Application of Physics-Informed Neural Networks in Removing Telescope Beam Effects","authors":"Shulei Ni, Yisheng Qiu, Yunchuan Chen, Zihao Song, Hao Chen, Xuejian Jiang, Donghui Quan, Huaxi Chen","doi":"arxiv-2409.05718","DOIUrl":null,"url":null,"abstract":"This study introduces PI-AstroDeconv, a physics-informed semi-supervised\nlearning method specifically designed for removing beam effects in astronomical\ntelescope observation systems. The method utilizes an encoder-decoder network\narchitecture and combines the telescope's point spread function or beam as\nprior information, while integrating fast Fourier transform accelerated\nconvolution techniques into the deep learning network. This enables effective\nremoval of beam effects from astronomical observation images. PI-AstroDeconv\ncan handle multiple PSFs or beams, tolerate imprecise measurements to some\nextent, and significantly improve the efficiency and accuracy of image\ndeconvolution. Therefore, this algorithm is particularly suitable for\nastronomical data processing that does not rely on annotated data. To validate\nthe reliability of the algorithm, we used the SKA Science Data Challenge 3a\ndatasets and compared it with the CLEAN deconvolution method at the 2-D matter\npower spectrum level. The results demonstrate that our algorithm not only\nrestores details and reduces blurriness in celestial images at the pixel level\nbut also more accurately recovers the true neutral hydrogen power spectrum at\nthe matter power spectrum level.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces PI-AstroDeconv, a physics-informed semi-supervised learning method specifically designed for removing beam effects in astronomical telescope observation systems. The method utilizes an encoder-decoder network architecture and combines the telescope's point spread function or beam as prior information, while integrating fast Fourier transform accelerated convolution techniques into the deep learning network. This enables effective removal of beam effects from astronomical observation images. PI-AstroDeconv can handle multiple PSFs or beams, tolerate imprecise measurements to some extent, and significantly improve the efficiency and accuracy of image deconvolution. Therefore, this algorithm is particularly suitable for astronomical data processing that does not rely on annotated data. To validate the reliability of the algorithm, we used the SKA Science Data Challenge 3a datasets and compared it with the CLEAN deconvolution method at the 2-D matter power spectrum level. The results demonstrate that our algorithm not only restores details and reduces blurriness in celestial images at the pixel level but also more accurately recovers the true neutral hydrogen power spectrum at the matter power spectrum level.
物理信息神经网络在消除望远镜光束效应中的应用
本研究介绍了 PI-AstroDeconv,这是一种物理信息半监督学习方法,专门用于消除天文望远镜观测系统中的光束效应。该方法利用编码器-解码器网络架构,结合望远镜的点扩散函数或光束前沿信息,同时将快速傅立叶变换加速卷积技术集成到深度学习网络中。这样就能有效消除天文观测图像中的光束效应。PI-AstroDeconv 可以处理多个 PSF 或光束,在一定程度上容忍不精确的测量,并显著提高图像解卷积的效率和精度。因此,该算法特别适用于不依赖注释数据的天文数据处理。为了验证该算法的可靠性,我们使用了SKA科学数据挑战赛3数据集,并在二维物质功率谱层面将其与CLEAN解卷积方法进行了比较。结果表明,我们的算法不仅能在像素级恢复天体图像的细节并降低模糊度,还能在物质功率谱级更准确地恢复真实的中性氢功率谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信