Navigating with Stability: Local Minima, Patterns, and Evolution in a Gradient Damage Fracture Model

M. M. Terzi, O. U. Salman, D. Faurie, A. A. León Baldelli
{"title":"Navigating with Stability: Local Minima, Patterns, and Evolution in a Gradient Damage Fracture Model","authors":"M. M. Terzi, O. U. Salman, D. Faurie, A. A. León Baldelli","doi":"arxiv-2409.04307","DOIUrl":null,"url":null,"abstract":"In phase-field theories of brittle fracture, crack initiation, growth and\npath selection are investigated using non-convex energy functionals and a\nstability criterion. The lack of convexity with respect to the state poses\ndifficulties to monolithic solvers that aim to solve for kinematic and internal\nvariables, simultaneously. In this paper, we inquire into the effectiveness of\nquasi-Newton algorithms as an alternative to conventional Newton-Raphson\nsolvers. These algorithms improve convergence by constructing a positive\ndefinite approximation of the Hessian, bargaining improved convergence with the\nrisk of missing bifurcation points and stability thresholds. Our study focuses\non one-dimensional phase-field fracture models of brittle thin films on elastic\nfoundations. Within this framework, in the absence of irreversibility\nconstraint, we construct an equilibrium map that represents all stable and\nunstable equilibrium states as a function of the external load, using\nwell-known branch-following bifurcation techniques. Our main finding is that\nquasi-Newton algorithms fail to select stable evolution paths without exact\nsecond variation information. To solve this issue, we perform a spectral\nanalysis of the full Hessian, providing optimal perturbations that enable\nquasi-Newton methods to follow a stable and potentially unique path for crack\nevolution. Finally, we discuss the stability issues and optimal perturbations\nin the case when the damage irreversibility is present, changing the\ntopological structure of the set of admissible perturbations from a linear\nvector space to a convex cone.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In phase-field theories of brittle fracture, crack initiation, growth and path selection are investigated using non-convex energy functionals and a stability criterion. The lack of convexity with respect to the state poses difficulties to monolithic solvers that aim to solve for kinematic and internal variables, simultaneously. In this paper, we inquire into the effectiveness of quasi-Newton algorithms as an alternative to conventional Newton-Raphson solvers. These algorithms improve convergence by constructing a positive definite approximation of the Hessian, bargaining improved convergence with the risk of missing bifurcation points and stability thresholds. Our study focuses on one-dimensional phase-field fracture models of brittle thin films on elastic foundations. Within this framework, in the absence of irreversibility constraint, we construct an equilibrium map that represents all stable and unstable equilibrium states as a function of the external load, using well-known branch-following bifurcation techniques. Our main finding is that quasi-Newton algorithms fail to select stable evolution paths without exact second variation information. To solve this issue, we perform a spectral analysis of the full Hessian, providing optimal perturbations that enable quasi-Newton methods to follow a stable and potentially unique path for crack evolution. Finally, we discuss the stability issues and optimal perturbations in the case when the damage irreversibility is present, changing the topological structure of the set of admissible perturbations from a linear vector space to a convex cone.
稳定导航:梯度损伤断裂模型中的局部极小值、模式和演变
在脆性断裂的相场理论中,使用非凸能量函数和可塑性准则对裂纹的产生、生长和路径选择进行了研究。与状态相关的凸性的缺乏给同时求解运动学变量和内部变量的整体求解器带来了困难。在本文中,我们探讨了准牛顿算法作为传统牛顿-拉弗松求解器替代方案的有效性。这些算法通过构建 Hessian 的正定有限近似值来提高收敛性,并在降低分岔点和稳定性阈值缺失风险的同时提高收敛性。我们的研究侧重于弹性基础上脆性薄膜的一维相场断裂模型。在这一框架内,在不存在不可逆约束的情况下,我们利用众所周知的分支跟随分岔技术,构建了一个平衡图,将所有稳定和不稳定的平衡状态表示为外部载荷的函数。我们的主要发现是,如果没有精确的二次变化信息,准牛顿算法无法选择稳定的演化路径。为了解决这个问题,我们对全 Hessian 进行了频谱分析,提供了最优扰动,使准牛顿算法能够遵循一条稳定且可能是唯一的 crackevolution 路径。最后,我们讨论了损伤不可逆情况下的稳定性问题和最优扰动,这使得可允许扰动集的拓扑结构从线性向量空间变为凸锥体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信