Pattern formation of bulk-surface reaction-diffusion systems in a ball

Edgardo Villar-Sepúlveda, Alan R. Champneys, Davide Cusseddu, Anotida Madzvamuse
{"title":"Pattern formation of bulk-surface reaction-diffusion systems in a ball","authors":"Edgardo Villar-Sepúlveda, Alan R. Champneys, Davide Cusseddu, Anotida Madzvamuse","doi":"arxiv-2409.06826","DOIUrl":null,"url":null,"abstract":"Weakly nonlinear amplitude equations are derived for the onset of spatially\nextended patterns on a general class of $n$-component bulk-surface\nreaction-diffusion systems in a ball, under the assumption of linear kinetics\nin the bulk. Linear analysis shows conditions under which various pattern modes\ncan become unstable to either generalised pitchfork or transcritical\nbifurcations depending on the parity of the spatial wavenumber. Weakly\nnonlinear analysis is used to derive general expressions for the\nmulti-component amplitude equations of different patterned states. These\nreduced-order systems are found to agree with prior normal forms for pattern\nformation bifurcations with $O(3)$ symmetry and provide information on the\nstability of bifurcating patterns of different symmetry types. The analysis is\ncomplemented with numerical results using a dedicated finite-element method.\nThe theory is illustrated in two examples; a bulk-surface version of the\nBrusselator, and a four-component cell-polarity model.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Weakly nonlinear amplitude equations are derived for the onset of spatially extended patterns on a general class of $n$-component bulk-surface reaction-diffusion systems in a ball, under the assumption of linear kinetics in the bulk. Linear analysis shows conditions under which various pattern modes can become unstable to either generalised pitchfork or transcritical bifurcations depending on the parity of the spatial wavenumber. Weakly nonlinear analysis is used to derive general expressions for the multi-component amplitude equations of different patterned states. These reduced-order systems are found to agree with prior normal forms for pattern formation bifurcations with $O(3)$ symmetry and provide information on the stability of bifurcating patterns of different symmetry types. The analysis is complemented with numerical results using a dedicated finite-element method. The theory is illustrated in two examples; a bulk-surface version of the Brusselator, and a four-component cell-polarity model.
球体表面反应扩散系统的模式形成
在球体线性动力学的假设下,推导出了球体中一般类别的 $n$ 分量块体-表面反应-扩散系统空间扩展模式的弱非线性振幅方程。线性分析表明,根据空间波数的奇偶性,在某些条件下各种图案模式会变得不稳定,要么出现广义叉形分叉,要么出现跨临界分叉。弱线性分析用于推导不同图案状态的多分量振幅方程的一般表达式。研究发现,这些降阶系统与具有 $O(3)$ 对称性的图案信息分岔的先前正常形式一致,并提供了不同对称类型的分岔图案的稳定性信息。该分析使用专用有限元方法的数值结果进行了补充。该理论通过两个例子进行了说明:布鲁塞尔器的体表面版本和四分量细胞极性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信