Uplink Over-the-Air Aggregation for Multi-Model Wireless Federated Learning

Chong Zhang, Min Dong, Ben Liang, Ali Afana, Yahia Ahmed
{"title":"Uplink Over-the-Air Aggregation for Multi-Model Wireless Federated Learning","authors":"Chong Zhang, Min Dong, Ben Liang, Ali Afana, Yahia Ahmed","doi":"arxiv-2409.00978","DOIUrl":null,"url":null,"abstract":"We propose an uplink over-the-air aggregation (OAA) method for wireless\nfederated learning (FL) that simultaneously trains multiple models. To maximize\nthe multi-model training convergence rate, we derive an upper bound on the\noptimality gap of the global model update, and then, formulate an uplink joint\ntransmit-receive beamforming optimization problem to minimize this upper bound.\nWe solve this problem using the block coordinate descent approach, which admits\nlow-complexity closed-form updates. Simulation results show that our proposed\nmulti-model FL with fast OAA substantially outperforms sequentially training\nmultiple models under the conventional single-model approach.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an uplink over-the-air aggregation (OAA) method for wireless federated learning (FL) that simultaneously trains multiple models. To maximize the multi-model training convergence rate, we derive an upper bound on the optimality gap of the global model update, and then, formulate an uplink joint transmit-receive beamforming optimization problem to minimize this upper bound. We solve this problem using the block coordinate descent approach, which admits low-complexity closed-form updates. Simulation results show that our proposed multi-model FL with fast OAA substantially outperforms sequentially training multiple models under the conventional single-model approach.
多模式无线联合学习的上行链路空中聚合
我们为无线联合学习(FL)提出了一种可同时训练多个模型的上行链路空中聚合(OAA)方法。为了最大限度地提高多模型训练收敛率,我们推导出了全局模型更新最优性差距的上界,然后提出了一个上行链路联合发射接收波束成形优化问题,以最小化该上界。仿真结果表明,我们提出的具有快速 OAA 的多模型 FL 大大优于传统单模型方法下的多模型顺序训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信