Refined Statistical Bounds for Classification Error Mismatches with Constrained Bayes Error

Zijian Yang, Vahe Eminyan, Ralf Schlüter, Hermann Ney
{"title":"Refined Statistical Bounds for Classification Error Mismatches with Constrained Bayes Error","authors":"Zijian Yang, Vahe Eminyan, Ralf Schlüter, Hermann Ney","doi":"arxiv-2409.01309","DOIUrl":null,"url":null,"abstract":"In statistical classification/multiple hypothesis testing and machine\nlearning, a model distribution estimated from the training data is usually\napplied to replace the unknown true distribution in the Bayes decision rule,\nwhich introduces a mismatch between the Bayes error and the model-based\nclassification error. In this work, we derive the classification error bound to\nstudy the relationship between the Kullback-Leibler divergence and the\nclassification error mismatch. We first reconsider the statistical bounds based\non classification error mismatch derived in previous works, employing a\ndifferent method of derivation. Then, motivated by the observation that the\nBayes error is typically low in machine learning tasks like speech recognition\nand pattern recognition, we derive a refined Kullback-Leibler-divergence-based\nbound on the error mismatch with the constraint that the Bayes error is lower\nthan a threshold.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In statistical classification/multiple hypothesis testing and machine learning, a model distribution estimated from the training data is usually applied to replace the unknown true distribution in the Bayes decision rule, which introduces a mismatch between the Bayes error and the model-based classification error. In this work, we derive the classification error bound to study the relationship between the Kullback-Leibler divergence and the classification error mismatch. We first reconsider the statistical bounds based on classification error mismatch derived in previous works, employing a different method of derivation. Then, motivated by the observation that the Bayes error is typically low in machine learning tasks like speech recognition and pattern recognition, we derive a refined Kullback-Leibler-divergence-based bound on the error mismatch with the constraint that the Bayes error is lower than a threshold.
受约束贝叶斯误差分类误差不匹配的精炼统计边界
在统计分类/多重假设检验和机器学习中,通常会在贝叶斯决策规则中应用从训练数据中估计出的模型分布来替代未知的真实分布,这就引入了贝叶斯误差和基于模型的分类误差之间的不匹配。在这项工作中,我们通过推导分类误差约束来研究 Kullback-Leibler 发散与分类误差不匹配之间的关系。首先,我们采用不同的推导方法,重新考虑了前人基于分类误差不匹配推导出的统计边界。然后,由于观察到贝叶斯误差在语音识别和模式识别等机器学习任务中通常较低,我们推导出了基于库尔贝-莱布勒发散的误差失配细化边界,其约束条件是贝叶斯误差低于阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信