Key Compression Limits for $k$-Minimum Value Sketches

Charlie Dickens, Eric Bax, Alexander Saydakov
{"title":"Key Compression Limits for $k$-Minimum Value Sketches","authors":"Charlie Dickens, Eric Bax, Alexander Saydakov","doi":"arxiv-2409.02852","DOIUrl":null,"url":null,"abstract":"The $k$-Minimum Values (\\kmv) data sketch algorithm stores the $k$ least hash\nkeys generated by hashing the items in a dataset. We show that compression\nbased on ordering the keys and encoding successive differences can offer\n$O(\\log n)$ bits per key in expected storage savings, where $n$ is the number\nof unique values in the data set. We also show that $O(\\log n)$ expected bits\nsaved per key is optimal for any form of compression for the $k$ least of $n$\nrandom values -- that the encoding method is near-optimal among all methods to\nencode a \\kmv sketch. We present a practical method to perform that\ncompression, show that it is computationally efficient, and demonstrate that\nits average savings in practice is within about five percent of the theoretical\nminimum based on entropy. We verify that our method outperforms off-the-shelf\ncompression methods, and we demonstrate that it is practical, using real and\nsynthetic data.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The $k$-Minimum Values (\kmv) data sketch algorithm stores the $k$ least hash keys generated by hashing the items in a dataset. We show that compression based on ordering the keys and encoding successive differences can offer $O(\log n)$ bits per key in expected storage savings, where $n$ is the number of unique values in the data set. We also show that $O(\log n)$ expected bits saved per key is optimal for any form of compression for the $k$ least of $n$ random values -- that the encoding method is near-optimal among all methods to encode a \kmv sketch. We present a practical method to perform that compression, show that it is computationally efficient, and demonstrate that its average savings in practice is within about five percent of the theoretical minimum based on entropy. We verify that our method outperforms off-the-shelf compression methods, and we demonstrate that it is practical, using real and synthetic data.
k$ 最小值草图的密钥压缩限制
$k$-Minimum Values (\kmv)数据草图算法存储了数据集中通过散列项目生成的 $k$ 最少哈希密钥。我们证明,基于对密钥排序和连续差值编码的压缩可以为每个密钥提供 $O(\log n)$ 比特的预期存储节省,其中 $n$ 是数据集中唯一值的数量。我们还证明,对于任何形式的压缩来说,至少有 $n$ 随机值的 $k$ 每个密钥节省的 $O(\log n)$ 预期比特数都是最优的--在所有对 \kmv 草图进行编码的方法中,这种编码方法接近最优。我们提出了一种执行该压缩的实用方法,证明它的计算效率很高,并证明它在实践中的平均节省率在基于熵的理论最小值的 5% 左右。我们验证了我们的方法优于现成的压缩方法,并使用真实和合成数据证明了它的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信