A note on the differential spectrum of the Ness-Helleseth function

Ketong Ren, Maosheng Xiong, Haode Yan
{"title":"A note on the differential spectrum of the Ness-Helleseth function","authors":"Ketong Ren, Maosheng Xiong, Haode Yan","doi":"arxiv-2409.03189","DOIUrl":null,"url":null,"abstract":"Let $n\\geqslant3$ be an odd integer and $u$ an element in the finite field\n$\\gf_{3^n}$. The Ness-Helleseth function is the binomial\n$f_u(x)=ux^{d_1}+x^{d_2}$ over $\\gf_{3^n}$, where $d_1=\\frac{3^n-1}{2}-1$ and\n$d_2=3^n-2$. In 2007, Ness and Helleseth showed that $f_u$ is an APN function\nwhen $\\chi(u+1)=\\chi(u-1)=\\chi(u)$, is differentially $3$-uniform when\n$\\chi(u+1)=\\chi(u-1)\\neq\\chi(u)$, and has differential uniformity at most 4 if\n$ \\chi(u+1)\\neq\\chi(u-1)$ and $u\\notin\\gf_3$. Here $\\chi(\\cdot)$ denotes the\nquadratic character on $\\gf_{3^n}$. Recently, Xia et al. determined the\ndifferential uniformity of $f_u$ for all $u$ and computed the differential\nspectrum of $f_u$ for $u$ satisfying $\\chi(u+1)=\\chi(u-1)$ or $u\\in\\gf_3$. The\nremaining problem is the differential spectrum of $f_u$ with\n$\\chi(u+1)\\neq\\chi(u-1)$ and $u\\notin\\gf_3$. In this paper, we fill in the gap.\nBy studying differential equations arising from the Ness-Helleseth function\n$f_u$ more carefully, we express the differential spectrum of $f_u$ for such\n$u$ in terms of two quadratic character sums. This complements the previous\nwork of Xia et al.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $n\geqslant3$ be an odd integer and $u$ an element in the finite field $\gf_{3^n}$. The Ness-Helleseth function is the binomial $f_u(x)=ux^{d_1}+x^{d_2}$ over $\gf_{3^n}$, where $d_1=\frac{3^n-1}{2}-1$ and $d_2=3^n-2$. In 2007, Ness and Helleseth showed that $f_u$ is an APN function when $\chi(u+1)=\chi(u-1)=\chi(u)$, is differentially $3$-uniform when $\chi(u+1)=\chi(u-1)\neq\chi(u)$, and has differential uniformity at most 4 if $ \chi(u+1)\neq\chi(u-1)$ and $u\notin\gf_3$. Here $\chi(\cdot)$ denotes the quadratic character on $\gf_{3^n}$. Recently, Xia et al. determined the differential uniformity of $f_u$ for all $u$ and computed the differential spectrum of $f_u$ for $u$ satisfying $\chi(u+1)=\chi(u-1)$ or $u\in\gf_3$. The remaining problem is the differential spectrum of $f_u$ with $\chi(u+1)\neq\chi(u-1)$ and $u\notin\gf_3$. In this paper, we fill in the gap. By studying differential equations arising from the Ness-Helleseth function $f_u$ more carefully, we express the differential spectrum of $f_u$ for such $u$ in terms of two quadratic character sums. This complements the previous work of Xia et al.
关于奈斯-赫勒塞斯函数微分谱的说明
设 $n\geqslant3$ 为奇整数,$u$ 为有限域$g/f_{3^n}$ 中的一个元素。内斯-海勒塞斯函数是$\gf_{3^n}$上的二项式$f_u(x)=ux^{d_1}+x^{d_2}$,其中$d_1=\frac{3^n-1}{2}-1$,$d_2=3^n-2$。2007 年,Ness 和 Helleseth 发现,当 $\chi(u+1)=\chi(u-1)=\chi(u)$ 时,$f_u$ 是一个 APN 函数;当 $\chi(u+1)=\chi(u-1)\neq\chi(u)$ 时,$f_u$ 是一个差分均匀性为 3 美元的函数;当 $\chi(u+1)\neq\chi(u-1)$ 和 $u\notin\gf_3$ 时,差分均匀性最多为 4。这里的 $\chi(\cdot)$ 表示 $\gf_{3^n}$ 上的二次特征。最近,Xia 等人确定了 $f_u$ 对于所有 $u$ 的微分均匀性,并计算了满足 $\chi(u+1)=\chi(u-1)$ 或 $u\in\gf_3$ 的 $f_u$ 的微分谱。剩下的问题是$f_u$在满足$chi(u+1)\neq\chi(u-1)$和$u\notin\gf_3$时的微分谱。通过更仔细地研究由 Ness-Helleseth 函数$f_u$引起的微分方程,我们用两个二次特征和来表达这种$u$的$f_u$微分谱。这是对 Xia 等人之前工作的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信