Group Information Geometry Approach for Ultra-Massive MIMO Signal Detection

Jiyuan Yang, Yan Chen, Xiqi Gao, Xiang-Gen Xia, Dirk Slock
{"title":"Group Information Geometry Approach for Ultra-Massive MIMO Signal Detection","authors":"Jiyuan Yang, Yan Chen, Xiqi Gao, Xiang-Gen Xia, Dirk Slock","doi":"arxiv-2409.02616","DOIUrl":null,"url":null,"abstract":"We propose a group information geometry approach (GIGA) for ultra-massive\nmultiple-input multiple-output (MIMO) signal detection. The signal detection\ntask is framed as computing the approximate marginals of the a posteriori\ndistribution of the transmitted data symbols of all users. With the approximate\nmarginals, we perform the maximization of the {\\textsl{a posteriori}} marginals\n(MPM) detection to recover the symbol of each user. Based on the information\ngeometry theory and the grouping of the components of the received signal,\nthree types of manifolds are constructed and the approximate a posteriori\nmarginals are obtained through m-projections. The Berry-Esseen theorem is\nintroduced to offer an approximate calculation of the m-projection, while its\ndirect calculation is exponentially complex. In most cases, more groups, less\ncomplexity of GIGA. However, when the number of groups exceeds a certain\nthreshold, the complexity of GIGA starts to increase. Simulation results\nconfirm that the proposed GIGA achieves better bit error rate (BER) performance\nwithin a small number of iterations, which demonstrates that it can serve as an\nefficient detection method in ultra-massive MIMO systems.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a group information geometry approach (GIGA) for ultra-massive multiple-input multiple-output (MIMO) signal detection. The signal detection task is framed as computing the approximate marginals of the a posteriori distribution of the transmitted data symbols of all users. With the approximate marginals, we perform the maximization of the {\textsl{a posteriori}} marginals (MPM) detection to recover the symbol of each user. Based on the information geometry theory and the grouping of the components of the received signal, three types of manifolds are constructed and the approximate a posteriori marginals are obtained through m-projections. The Berry-Esseen theorem is introduced to offer an approximate calculation of the m-projection, while its direct calculation is exponentially complex. In most cases, more groups, less complexity of GIGA. However, when the number of groups exceeds a certain threshold, the complexity of GIGA starts to increase. Simulation results confirm that the proposed GIGA achieves better bit error rate (BER) performance within a small number of iterations, which demonstrates that it can serve as an efficient detection method in ultra-massive MIMO systems.
超大质量多输入多输出信号检测的群信息几何方法
我们提出了一种用于超大规模多输入多输出(MIMO)信号检测的群信息几何方法(GIGA)。信号检测任务的框架是计算所有用户传输数据符号后验分布的近似边际。利用近似边际值,我们执行{textsl{a posteriori}}边际值最大化(MPM)检测,以恢复每个用户的符号。基于信息几何理论和接收信号分量的分组,我们构建了三种流形,并通过 m 投影得到了近似后验边际。贝里-埃森定理的引入提供了 m 投影的近似计算,而其直接计算是指数级复杂的。在大多数情况下,组数越多,GIGA 的复杂性就越低。然而,当组数超过某个阈值时,GIGA 的复杂度就会开始增加。仿真结果证实,所提出的 GIGA 在少量迭代中就能获得较好的误码率(BER)性能,这表明它可以作为超大规模 MIMO 系统中的一种高效检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信