Statistically Valid Information Bottleneck via Multiple Hypothesis Testing

Amirmohammad Farzaneh, Osvaldo Simeone
{"title":"Statistically Valid Information Bottleneck via Multiple Hypothesis Testing","authors":"Amirmohammad Farzaneh, Osvaldo Simeone","doi":"arxiv-2409.07325","DOIUrl":null,"url":null,"abstract":"The information bottleneck (IB) problem is a widely studied framework in\nmachine learning for extracting compressed features that are informative for\ndownstream tasks. However, current approaches to solving the IB problem rely on\na heuristic tuning of hyperparameters, offering no guarantees that the learned\nfeatures satisfy information-theoretic constraints. In this work, we introduce\na statistically valid solution to this problem, referred to as IB via multiple\nhypothesis testing (IB-MHT), which ensures that the learned features meet the\nIB constraints with high probability, regardless of the size of the available\ndataset. The proposed methodology builds on Pareto testing and learn-then-test\n(LTT), and it wraps around existing IB solvers to provide statistical\nguarantees on the IB constraints. We demonstrate the performance of IB-MHT on\nclassical and deterministic IB formulations, validating the effectiveness of\nIB-MHT in outperforming conventional methods in terms of statistical robustness\nand reliability.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The information bottleneck (IB) problem is a widely studied framework in machine learning for extracting compressed features that are informative for downstream tasks. However, current approaches to solving the IB problem rely on a heuristic tuning of hyperparameters, offering no guarantees that the learned features satisfy information-theoretic constraints. In this work, we introduce a statistically valid solution to this problem, referred to as IB via multiple hypothesis testing (IB-MHT), which ensures that the learned features meet the IB constraints with high probability, regardless of the size of the available dataset. The proposed methodology builds on Pareto testing and learn-then-test (LTT), and it wraps around existing IB solvers to provide statistical guarantees on the IB constraints. We demonstrate the performance of IB-MHT on classical and deterministic IB formulations, validating the effectiveness of IB-MHT in outperforming conventional methods in terms of statistical robustness and reliability.
通过多重假设检验的统计有效信息瓶颈
信息瓶颈(IB)问题是机器学习中一个被广泛研究的框架,用于提取对下游任务具有信息意义的压缩特征。然而,目前解决 IB 问题的方法依赖于超参数的启发式调整,无法保证学习到的特征满足信息论约束。在这项工作中,我们针对这一问题提出了一种统计上有效的解决方案,称为通过多重假设检验的 IB(IB-MHT),无论可用数据集的大小如何,它都能确保学习到的特征高概率地满足 IB 约束条件。所提出的方法建立在帕累托测试和先学习后测试(LTT)的基础上,并与现有的 IB 求解器相结合,为 IB 约束条件提供统计保证。我们演示了 IB-MHT 在经典和确定性 IB 公式上的性能,验证了 IB-MHT 在统计稳健性和可靠性方面优于传统方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信