Linear Complementary Dual Codes Constructed from Reinforcement Learning

Yansheng Wu, Jin Ma, Shandong Yang
{"title":"Linear Complementary Dual Codes Constructed from Reinforcement Learning","authors":"Yansheng Wu, Jin Ma, Shandong Yang","doi":"arxiv-2409.08114","DOIUrl":null,"url":null,"abstract":"Recently, Linear Complementary Dual (LCD) codes have garnered substantial\ninterest within coding theory research due to their diverse applications and\nfavorable attributes. This paper directs its attention to the construction of\nbinary and ternary LCD codes leveraging curiosity-driven reinforcement learning\n(RL). By establishing reward and devising well-reasoned mappings from actions\nto states, it aims to facilitate the successful synthesis of binary or ternary\nLCD codes. Experimental results indicate that LCD codes constructed using RL\nexhibit slightly superior error-correction performance compared to those\nconventionally constructed LCD codes and those developed via standard RL\nmethodologies. The paper introduces novel binary and ternary LCD codes with\nenhanced minimum distance bounds. Finally, it showcases how Random Network\nDistillation aids agents in exploring beyond local optima, enhancing the\noverall performance of the models without compromising convergence.","PeriodicalId":501082,"journal":{"name":"arXiv - MATH - Information Theory","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Linear Complementary Dual (LCD) codes have garnered substantial interest within coding theory research due to their diverse applications and favorable attributes. This paper directs its attention to the construction of binary and ternary LCD codes leveraging curiosity-driven reinforcement learning (RL). By establishing reward and devising well-reasoned mappings from actions to states, it aims to facilitate the successful synthesis of binary or ternary LCD codes. Experimental results indicate that LCD codes constructed using RL exhibit slightly superior error-correction performance compared to those conventionally constructed LCD codes and those developed via standard RL methodologies. The paper introduces novel binary and ternary LCD codes with enhanced minimum distance bounds. Finally, it showcases how Random Network Distillation aids agents in exploring beyond local optima, enhancing the overall performance of the models without compromising convergence.
通过强化学习构建线性互补双编码
近来,线性互补双(LCD)码因其多样化的应用和有利的特性,在编码理论研究领域引起了极大的兴趣。本文主要关注利用好奇心驱动的强化学习(RL)构建二元和三元 LCD 代码。通过建立奖励和设计从行动到状态的合理映射,本文旨在促进二元或三元液晶编码的成功合成。实验结果表明,与传统构建的液晶编码和通过标准 RL 方法开发的液晶编码相比,使用 RL 构建的液晶编码在纠错性能上略胜一筹。论文介绍了具有增强的最小距离边界的新型二元和三元液晶编码。最后,它展示了随机网络蒸馏如何帮助代理探索局部最优之外的问题,从而在不影响收敛性的情况下提高模型的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信