Spectral Properties of the Fourth Order Differential Operator with Integral Conditions

IF 0.8 Q2 MATHEMATICS
R. D. Karamyan, A. L. Skubachevskii
{"title":"Spectral Properties of the Fourth Order Differential Operator with Integral Conditions","authors":"R. D. Karamyan, A. L. Skubachevskii","doi":"10.1134/s1995080224601188","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We consider an ordinary fourth-order differential equation with a spectral parameter and integral conditions containing a linear combination of derivatives of an unknown function. In terms of equivalent norms, a priori estimates for solutions of this problem are obtained for sufficiently large values of the spectral parameter. Using these estimates, the discreteness, the sectorial structure of spectrum, and the Fredholm solvability of problem are proven.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224601188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider an ordinary fourth-order differential equation with a spectral parameter and integral conditions containing a linear combination of derivatives of an unknown function. In terms of equivalent norms, a priori estimates for solutions of this problem are obtained for sufficiently large values of the spectral parameter. Using these estimates, the discreteness, the sectorial structure of spectrum, and the Fredholm solvability of problem are proven.

带积分条件的四阶微分算子的谱特性
摘要 我们考虑了一个普通四阶微分方程,该方程有一个谱参数,积分条件包含一个未知函数导数的线性组合。根据等效规范,我们得到了在谱参数值足够大的情况下该问题解的先验估计值。利用这些估计值,证明了问题的离散性、谱的扇形结构和弗雷德霍姆可解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信