Development Trefftz Method for Problems of Nonhomogeneous Media

IF 0.8 Q2 MATHEMATICS
D. B. Volkov-Bogorodskiy
{"title":"Development Trefftz Method for Problems of Nonhomogeneous Media","authors":"D. B. Volkov-Bogorodskiy","doi":"10.1134/s1995080224602534","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A new scheme for solving problems in the mechanics of structurally nonhomogeneous media is proposed. This scheme is based on dividing of the initial domain into system of subdomain-blocks similar to finite elements and on approximation of the solution in each block by a systems of functions that exactly satisfy the equation and do not assume unlike the finite element method continuity at the block boundaries. This scheme is based on the Papkovich–Neuber analytical representation through the auxiliary potentials, which makes it possible to construct the complete approximation systems in nonhomogeneous media that analytically satisfy the initial equations and contact conditions on the boundaries of inhomogeneities. Also this scheme is based on the generalization of a direct Trefftz method in the system of subdomain-blocks, which approximates the solution in discontinuous energy space. It is shown that generalized Trefftz method has the ability simultaneously with minimizing of the energy functional to stitch together all the necessary quantities at the block boundaries. They are displacements, surface forces and for gradient elasticity models also derivatives and cohesion moments. This ability is achieved solely due to the analytical representation of the used functions. This analytical representation opens up the possibility of construction of finite element approximations for complex nonhomogeneous media on unstructured meshes and inconsistent shape functions, that analytically accurately reproduce the stress state at the vicinity of inclusions and can be considered as a new technology of finite element approximations.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":"33 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224602534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A new scheme for solving problems in the mechanics of structurally nonhomogeneous media is proposed. This scheme is based on dividing of the initial domain into system of subdomain-blocks similar to finite elements and on approximation of the solution in each block by a systems of functions that exactly satisfy the equation and do not assume unlike the finite element method continuity at the block boundaries. This scheme is based on the Papkovich–Neuber analytical representation through the auxiliary potentials, which makes it possible to construct the complete approximation systems in nonhomogeneous media that analytically satisfy the initial equations and contact conditions on the boundaries of inhomogeneities. Also this scheme is based on the generalization of a direct Trefftz method in the system of subdomain-blocks, which approximates the solution in discontinuous energy space. It is shown that generalized Trefftz method has the ability simultaneously with minimizing of the energy functional to stitch together all the necessary quantities at the block boundaries. They are displacements, surface forces and for gradient elasticity models also derivatives and cohesion moments. This ability is achieved solely due to the analytical representation of the used functions. This analytical representation opens up the possibility of construction of finite element approximations for complex nonhomogeneous media on unstructured meshes and inconsistent shape functions, that analytically accurately reproduce the stress state at the vicinity of inclusions and can be considered as a new technology of finite element approximations.

Abstract Image

非均质介质问题的特雷弗兹法发展
摘要 提出了一种解决结构非均质介质力学问题的新方案。该方案的基础是将初始域划分为类似有限元的子域块系统,并在每个块中通过函数系统近似求解,这些函数系统完全满足方程要求,且不像有限元方法那样假定块边界的连续性。该方案基于帕普科维奇-纽伯(Papkovich-Neuber)分析表示法,通过辅助电势,可以在非均质介质中构建完整的近似系统,通过分析满足初始方程和非均质边界的接触条件。此外,该方案还基于子域块系统中直接特雷弗兹方法的广义化,可逼近非连续能量空间中的解。研究表明,广义特里夫兹法在最小化能量函数的同时,还能拼接块边界的所有必要量。这些量包括位移、表面力,梯度弹性模型还包括导数和内聚力矩。这种能力的实现完全归功于所使用函数的分析表示。这种分析表示法为在非结构网格和不一致的形状函数上构建复杂非均质介质的有限元近似提供了可能性,可以通过分析精确地再现夹杂物附近的应力状态,可视为有限元近似的一项新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信