A New Economical Unconditional Stable Splitting Method for Numerical Solution of Problems of Mathematical Physics

IF 0.8 Q2 MATHEMATICS
Ek. L. Kuznetsova, O. V. Egorova, A. S. Novikov
{"title":"A New Economical Unconditional Stable Splitting Method for Numerical Solution of Problems of Mathematical Physics","authors":"Ek. L. Kuznetsova, O. V. Egorova, A. S. Novikov","doi":"10.1134/s1995080224602467","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, an economical unconditionally stable method of variable directions with extrapolation of numerical solutions of problems for parabolic equations containing mixed derivatives is proposed and justified by approximation and stability, which, in comparative analysis with other numerical methods, showed the highest accuracy and a unique margin of stability when changing grid characteristics.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":"8 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224602467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an economical unconditionally stable method of variable directions with extrapolation of numerical solutions of problems for parabolic equations containing mixed derivatives is proposed and justified by approximation and stability, which, in comparative analysis with other numerical methods, showed the highest accuracy and a unique margin of stability when changing grid characteristics.

Abstract Image

用于数学物理问题数值求解的新型经济无条件稳定分割法
摘要 本文提出了一种经济的无条件稳定的变向外推法,用于求解含有混合导数的抛物线方程问题的数值解,并从近似性和稳定性方面进行了论证,在与其他数值方法的对比分析中,该方法在改变网格特性时显示出最高的精度和独特的稳定余量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
42.90%
发文量
127
期刊介绍: Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信