$K_2$ and quantum curves

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Charles F. Doran, Matt Kerr, Soumya Sinha Babu
{"title":"$K_2$ and quantum curves","authors":"Charles F. Doran, Matt Kerr, Soumya Sinha Babu","doi":"10.4310/atmp.2023.v27.n8.a1","DOIUrl":null,"url":null,"abstract":"A 2015 conjecture of Codesido-Grassi-Mariño in topological string theory relates the enumerative invariants of toric CY $3$-folds to the spectra of operators attached to their mirror curves. We deduce two consequences of this conjecture for the integral regulators of $K_2$-classes on these curves, and then prove both of them; the results thus give evidence for the CGM conjecture. (While the conjecture and the deduction process both entail forms of local mirror symmetry, the consequences/theorems do not: they only involve the curves themselves.) Our first theorem relates zeroes of the higher normal function to the spectra of the operators for curves of genus one, and suggests a new link between analysis and arithmetic geometry. The second theorem provides dilogarithm formulas for limits of regulator periods at the maximal conifold point in moduli of the curves.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/atmp.2023.v27.n8.a1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A 2015 conjecture of Codesido-Grassi-Mariño in topological string theory relates the enumerative invariants of toric CY $3$-folds to the spectra of operators attached to their mirror curves. We deduce two consequences of this conjecture for the integral regulators of $K_2$-classes on these curves, and then prove both of them; the results thus give evidence for the CGM conjecture. (While the conjecture and the deduction process both entail forms of local mirror symmetry, the consequences/theorems do not: they only involve the curves themselves.) Our first theorem relates zeroes of the higher normal function to the spectra of the operators for curves of genus one, and suggests a new link between analysis and arithmetic geometry. The second theorem provides dilogarithm formulas for limits of regulator periods at the maximal conifold point in moduli of the curves.
K_2$ 和量子曲线
Codesido-Grassi-Mariño 2015 年在拓扑弦理论中提出的一个猜想将环状 CY 3$ 折叠的枚举不变式与其镜像曲线上的算子谱联系起来。我们为这些曲线上的 $K_2$ 类积分调节器推导出了这个猜想的两个后果,然后证明了这两个后果;这些结果从而为 CGM 猜想提供了证据。(虽然猜想和推导过程都包含局部镜像对称的形式,但结果/定理却不包含:它们只涉及曲线本身)。我们的第一个定理将高次正函数的零点与一属曲线的算子谱联系起来,并提出了分析与算术几何之间的新联系。第二个定理提供了曲线模中最大圆锥点的调节器周期极限的稀对数公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Theoretical and Mathematical Physics
Advances in Theoretical and Mathematical Physics 物理-物理:粒子与场物理
CiteScore
2.20
自引率
6.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信