Anisotropic Ising Model in $$d+s$$ Dimensions

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Estevão F. Borel, Aldo Procacci, Rémy Sanchis, Roger W. C. Silva
{"title":"Anisotropic Ising Model in $$d+s$$ Dimensions","authors":"Estevão F. Borel, Aldo Procacci, Rémy Sanchis, Roger W. C. Silva","doi":"10.1007/s00023-024-01475-6","DOIUrl":null,"url":null,"abstract":"<p>In this note, we consider the asymmetric nearest neighbor ferromagnetic Ising model on the <span>\\((d+s)\\)</span>-dimensional unit cubic lattice <span>\\({\\mathbb {Z}}^{d+s}\\)</span>, at inverse temperature <span>\\(\\beta =1\\)</span> and with coupling constants <span>\\(J_s&gt;0\\)</span> and <span>\\(J_d&gt;0\\)</span> for edges of <span>\\({\\mathbb {Z}}^s\\)</span> and <span>\\({\\mathbb {Z}}^d\\)</span>, respectively. We obtain a lower bound for the critical curve in the phase diagram of <span>\\((J_s,J_d)\\)</span>. In particular, as <span>\\(J_d\\)</span> approaches its critical value from below, our result is directly related to the so-called dimensional crossover phenomenon.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"36 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01475-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we consider the asymmetric nearest neighbor ferromagnetic Ising model on the \((d+s)\)-dimensional unit cubic lattice \({\mathbb {Z}}^{d+s}\), at inverse temperature \(\beta =1\) and with coupling constants \(J_s>0\) and \(J_d>0\) for edges of \({\mathbb {Z}}^s\) and \({\mathbb {Z}}^d\), respectively. We obtain a lower bound for the critical curve in the phase diagram of \((J_s,J_d)\). In particular, as \(J_d\) approaches its critical value from below, our result is directly related to the so-called dimensional crossover phenomenon.

Abstract Image

各向异性等效模型在 $$d+s$$ 维度上的应用
在本文中,我们考虑了在((d+s))维单位立方晶格 \({\mathbb {Z}}^{d+s}\) 上的非对称近邻铁磁 Ising 模型,在反温度 \(\beta =1\)和耦合常数 \(J_s>;0) 和 \(J_d>0\) 分别用于 \({\mathbb {Z}}^s\) 和 \({\mathbb {Z}}^d\) 的边缘。我们得到了 \((J_s,J_d)\) 相图中临界曲线的下限。特别是,当 \(J_d\) 从下往上接近临界值时,我们的结果与所谓的维数交叉现象直接相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信