Aharonov–Casher Theorems for Dirac Operators on Manifolds with Boundary and APS Boundary Condition

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
M. Fialová
{"title":"Aharonov–Casher Theorems for Dirac Operators on Manifolds with Boundary and APS Boundary Condition","authors":"M. Fialová","doi":"10.1007/s00023-024-01482-7","DOIUrl":null,"url":null,"abstract":"<p>The Aharonov–Casher theorem is a result on the number of the so-called zero modes of a system described by the magnetic Pauli operator in <span>\\(\\mathbb {R}^2\\)</span>. In this paper we address the same question for the Dirac operator on a flat two-dimensional manifold with boundary and Atiyah–Patodi–Singer boundary condition. More concretely we are interested in the plane and a disc with a finite number of circular holes cut out. We consider a smooth compactly supported magnetic field on the manifold and an arbitrary magnetic field inside the holes.</p>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"59 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1007/s00023-024-01482-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Aharonov–Casher theorem is a result on the number of the so-called zero modes of a system described by the magnetic Pauli operator in \(\mathbb {R}^2\). In this paper we address the same question for the Dirac operator on a flat two-dimensional manifold with boundary and Atiyah–Patodi–Singer boundary condition. More concretely we are interested in the plane and a disc with a finite number of circular holes cut out. We consider a smooth compactly supported magnetic field on the manifold and an arbitrary magnetic field inside the holes.

有边界和 APS 边界条件的流形上狄拉克算子的阿哈诺夫-卡舍尔定理
Aharonov-Casher定理是关于在\(\mathbb {R}^2\)中由磁性保利算子描述的系统的所谓零模数量的结果。在本文中,我们要解决的问题同样适用于带边界和阿蒂亚-帕托迪-辛格边界条件的平面二维流形上的狄拉克算子。更具体地说,我们感兴趣的是平面和带有有限数量圆孔的圆盘。我们考虑流形上的光滑紧凑磁场和孔内的任意磁场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信