Investigating cation distribution and photocatalytic response of non-thermal plasma treated MZnFe2O4(M = Ni, Mg, Mn) nanocomposite ferrites

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Muhammad Aqib Busharat, Shazia Shukrullah, Mohamed M. Makhlouf
{"title":"Investigating cation distribution and photocatalytic response of non-thermal plasma treated MZnFe2O4(M = Ni, Mg, Mn) nanocomposite ferrites","authors":"Muhammad Aqib Busharat, Shazia Shukrullah, Mohamed M. Makhlouf","doi":"10.1557/s43578-024-01412-7","DOIUrl":null,"url":null,"abstract":"<p>A sol–gel technique was used to synthesize MZnFe<sub>2</sub>O<sub>4</sub> (M = Ni, Mg, Mn) spinel ferrite composites. The post-synthesis sintering of the nanocomposites was done at 700 °C for 5 h, followed by non-thermal microwave plasma treatment for 60 min. X-ray diffraction (XRD) analysis of the nanocomposites was conducted to comprehend the cation distribution of pristine and plasma-modified nanocomposites. XRD intensity of peaks for (220), (311), (400) and (440) planes were used to determine the cations distribution using intensity ratio method. The plasma-modified nanocomposites showed a decrease in the intensity ratio of XRD peaks and an increase in the size of the crystallites. The plasma-modified ZnNiFeO<sub>4</sub> showed a photocatalytic activity of 95% against RhB dye, ZnMgFe<sub>2</sub>O<sub>4</sub> showed photocatalytic activity of 87%, and ZnMnFe<sub>2</sub>O<sub>4</sub> showed a photocatalytic activity of 90%. The key drivers of high dye degradation efficiency are surface functionalization, removal of oxides and reduced band gap of the plasma-modified nanocomposites.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":16306,"journal":{"name":"Journal of Materials Research","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-024-01412-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A sol–gel technique was used to synthesize MZnFe2O4 (M = Ni, Mg, Mn) spinel ferrite composites. The post-synthesis sintering of the nanocomposites was done at 700 °C for 5 h, followed by non-thermal microwave plasma treatment for 60 min. X-ray diffraction (XRD) analysis of the nanocomposites was conducted to comprehend the cation distribution of pristine and plasma-modified nanocomposites. XRD intensity of peaks for (220), (311), (400) and (440) planes were used to determine the cations distribution using intensity ratio method. The plasma-modified nanocomposites showed a decrease in the intensity ratio of XRD peaks and an increase in the size of the crystallites. The plasma-modified ZnNiFeO4 showed a photocatalytic activity of 95% against RhB dye, ZnMgFe2O4 showed photocatalytic activity of 87%, and ZnMnFe2O4 showed a photocatalytic activity of 90%. The key drivers of high dye degradation efficiency are surface functionalization, removal of oxides and reduced band gap of the plasma-modified nanocomposites.

Graphical abstract

Abstract Image

研究经非热等离子体处理的 MZnFe2O4(M = Ni、Mg、Mn)纳米复合铁氧体的阳离子分布和光催化响应
采用溶胶-凝胶技术合成了 MZnFe2O4(M = Ni、Mg、Mn)尖晶石铁氧体复合材料。合成后的纳米复合材料在 700 °C 下烧结 5 小时,然后进行 60 分钟的非热微波等离子体处理。对纳米复合材料进行了 X 射线衍射(XRD)分析,以了解原始纳米复合材料和等离子体改性纳米复合材料的阳离子分布。利用X射线衍射(XRD)强度比法确定了(220)、(311)、(400)和(440)平面的阳离子分布。等离子体改性纳米复合材料的 XRD 峰强度比减小,晶体尺寸增大。等离子体改性的 ZnNiFeO4 对 RhB 染料的光催化活性为 95%,ZnMgFe2O4 的光催化活性为 87%,ZnMnFe2O4 的光催化活性为 90%。等离子体改性纳米复合材料的表面功能化、氧化物去除和带隙减小是染料降解效率高的主要驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research
Journal of Materials Research 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.70%
发文量
362
审稿时长
2.8 months
期刊介绍: Journal of Materials Research (JMR) publishes the latest advances about the creation of new materials and materials with novel functionalities, fundamental understanding of processes that control the response of materials, and development of materials with significant performance improvements relative to state of the art materials. JMR welcomes papers that highlight novel processing techniques, the application and development of new analytical tools, and interpretation of fundamental materials science to achieve enhanced materials properties and uses. Materials research papers in the following topical areas are welcome. • Novel materials discovery • Electronic, photonic and magnetic materials • Energy Conversion and storage materials • New thermal and structural materials • Soft materials • Biomaterials and related topics • Nanoscale science and technology • Advances in materials characterization methods and techniques • Computational materials science, modeling and theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信