Improving VANET Data Dissemination Efficiency with Deep Neural Networks

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ameur Bennaoui, Mustapha Guezouri, Mokhtar Keche
{"title":"Improving VANET Data Dissemination Efficiency with Deep Neural Networks","authors":"Ameur Bennaoui, Mustapha Guezouri, Mokhtar Keche","doi":"10.1007/s10922-024-09858-0","DOIUrl":null,"url":null,"abstract":"<p>Vehicular Ad-hoc Networks (VANETs) play a crucial role in Intelligent Transportation Systems (ITS), but their dynamic nature makes efficient data dissemination challenging. This paper proposes a novel deep learning-based method to optimize data dissemination within VANETs. A realistic dataset is generated through simulations using a modified Breadth-First Search algorithm combined with the Jaccard similarity coefficient to maximize message coverage. A deep neural network (DNN) is trained on this dataset to predict optimal forwarding paths in varying VANET conditions. Integration of this DNN-based protocol into OMNeT++ simulations demonstrates significant improvements in packet delivery ratios, reduced network overhead, and minimized transmission delays compared to existing dissemination protocols.</p>","PeriodicalId":50119,"journal":{"name":"Journal of Network and Systems Management","volume":"8 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Systems Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10922-024-09858-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular Ad-hoc Networks (VANETs) play a crucial role in Intelligent Transportation Systems (ITS), but their dynamic nature makes efficient data dissemination challenging. This paper proposes a novel deep learning-based method to optimize data dissemination within VANETs. A realistic dataset is generated through simulations using a modified Breadth-First Search algorithm combined with the Jaccard similarity coefficient to maximize message coverage. A deep neural network (DNN) is trained on this dataset to predict optimal forwarding paths in varying VANET conditions. Integration of this DNN-based protocol into OMNeT++ simulations demonstrates significant improvements in packet delivery ratios, reduced network overhead, and minimized transmission delays compared to existing dissemination protocols.

Abstract Image

利用深度神经网络提高 VANET 数据传播效率
车载 Ad-hoc 网络(VANET)在智能交通系统(ITS)中发挥着至关重要的作用,但其动态特性使高效数据传播面临挑战。本文提出了一种基于深度学习的新方法,用于优化 VANET 内的数据传播。通过模拟生成一个现实数据集,使用改进的 "广度优先搜索 "算法与 Jaccard 相似系数相结合,最大限度地扩大信息覆盖范围。在此数据集上训练了一个深度神经网络(DNN),以预测不同 VANET 条件下的最佳转发路径。与现有的传播协议相比,将这种基于 DNN 的协议集成到 OMNeT++ 模拟中,可显著提高数据包传送率,降低网络开销,并最大限度地减少传输延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
16.70%
发文量
65
审稿时长
>12 weeks
期刊介绍: Journal of Network and Systems Management, features peer-reviewed original research, as well as case studies in the fields of network and system management. The journal regularly disseminates significant new information on both the telecommunications and computing aspects of these fields, as well as their evolution and emerging integration. This outstanding quarterly covers architecture, analysis, design, software, standards, and migration issues related to the operation, management, and control of distributed systems and communication networks for voice, data, video, and networked computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信