Maturation of human cardiac organoids are required for disease modelling and drug discovery

Mark Pocock, Janice Reid, Harley Robinson, Natalie Charitakis, James Krycer, Simon Foster, Natasha Tuano, Rebecca Fitzsimmons, Mary Lor, Sara Howden, Katerina Vlahos, Kevin Watt, Adam Piers, Holly Voges, Patrick Fortuna, James Rae, Robert Parton, Robert Weintraub, Igor Konstantinov, David Elliott, Mirana Ramialison, Enzo Porrello, Richard Mills, James Hudson
{"title":"Maturation of human cardiac organoids are required for disease modelling and drug discovery","authors":"Mark Pocock, Janice Reid, Harley Robinson, Natalie Charitakis, James Krycer, Simon Foster, Natasha Tuano, Rebecca Fitzsimmons, Mary Lor, Sara Howden, Katerina Vlahos, Kevin Watt, Adam Piers, Holly Voges, Patrick Fortuna, James Rae, Robert Parton, Robert Weintraub, Igor Konstantinov, David Elliott, Mirana Ramialison, Enzo Porrello, Richard Mills, James Hudson","doi":"10.1101/2024.09.05.611336","DOIUrl":null,"url":null,"abstract":"Cardiac maturation is an important developmental phase culminating in profound biological and functional changes to adapt to the high demand environment after birth. Maturation of human pluripotent stem cell-derived human cardiac organoids (hCO) to more closely resemble human heart tissue is critical for understanding disease pathology. Herein, we profile human heart maturation in vivo to identify key signalling pathways that drive maturation in hCOs. Transient activation of both the 5 AMP-activated kinase (AMPK) and estrogen-related receptor (ERR) promoted hCO maturation by mimicking the increased functional demands of post-natal development. hCOs cultured under these directed maturation (DM) conditions (DM-hCOs) display robust transcriptional maturation including increased expression of mature sarcomeric and oxidative phosphorylation genes resulting in enhanced metabolic capacity. DM-hCOs have functionally mature properties such as sarcoplasmic reticulum-dependent calcium handling, accurate responses to drug treatments perturbing the excitation-coupling process and ability to detect ectopy CASQ2 and RYR2 mutants. Importantly, DM-hCOs permit modelling of complex human disease processes such as desmoplakin (DSP) cardiomyopathy, which is driven by multiple cell types. Subsequently, we deploy DM-hCOs to demonstrate that bromodomain extra-terminal inhibitor INCB054329 rescues the DSP phenotype. Together, this study demonstrates that recapitulating in vivo development promotes advanced maturation enabling disease modelling and the identification of a therapeutic strategy for DSP-cardiomyopathy.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac maturation is an important developmental phase culminating in profound biological and functional changes to adapt to the high demand environment after birth. Maturation of human pluripotent stem cell-derived human cardiac organoids (hCO) to more closely resemble human heart tissue is critical for understanding disease pathology. Herein, we profile human heart maturation in vivo to identify key signalling pathways that drive maturation in hCOs. Transient activation of both the 5 AMP-activated kinase (AMPK) and estrogen-related receptor (ERR) promoted hCO maturation by mimicking the increased functional demands of post-natal development. hCOs cultured under these directed maturation (DM) conditions (DM-hCOs) display robust transcriptional maturation including increased expression of mature sarcomeric and oxidative phosphorylation genes resulting in enhanced metabolic capacity. DM-hCOs have functionally mature properties such as sarcoplasmic reticulum-dependent calcium handling, accurate responses to drug treatments perturbing the excitation-coupling process and ability to detect ectopy CASQ2 and RYR2 mutants. Importantly, DM-hCOs permit modelling of complex human disease processes such as desmoplakin (DSP) cardiomyopathy, which is driven by multiple cell types. Subsequently, we deploy DM-hCOs to demonstrate that bromodomain extra-terminal inhibitor INCB054329 rescues the DSP phenotype. Together, this study demonstrates that recapitulating in vivo development promotes advanced maturation enabling disease modelling and the identification of a therapeutic strategy for DSP-cardiomyopathy.
疾病建模和药物研发需要成熟的人体心脏器官模型
心脏成熟是一个重要的发育阶段,最终会产生深刻的生物和功能变化,以适应出生后的高需求环境。人类多能干细胞衍生的人类心脏器官组织(hCO)的成熟更接近于人类心脏组织,这对了解疾病病理至关重要。在此,我们对人心脏的体内成熟进行了剖析,以确定驱动hCO成熟的关键信号通路。5AMP激活激酶(AMPK)和雌激素相关受体(ERR)的瞬时激活通过模拟出生后发育过程中增加的功能需求促进了hCO的成熟。在这些定向成熟(DM)条件下培养的hCO(DM-hCOs)显示出强大的转录成熟,包括成熟肉瘤基因和氧化磷酸化基因的表达增加,从而提高了代谢能力。DM-hCOs 具有功能成熟的特性,如依赖于肌质网的钙处理、对扰乱兴奋耦合过程的药物处理的准确反应以及检测异位 CASQ2 和 RYR2 突变体的能力。重要的是,DM-hCOs 可以模拟复杂的人类疾病过程,例如由多种细胞类型驱动的去甲斑蝥素(DSP)心肌病。随后,我们利用DM-hCOs证明了溴域末端外抑制剂INCB054329能挽救DSP表型。总之,这项研究表明,重现体内发育过程可促进高级成熟,从而建立疾病模型并确定 DSP 心肌病的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信