Madeline Fuchs, Dillon T Seroski, Bethsymarie Soto Morales, Lucas Melgar, Giannia Scibilio, Abigail Ziegler, Renjie Liu, Benjamin G Keselowsky, Gregory A Hudalla
{"title":"Supramolecular Enzyme-Peptide Gels for Localized Therapeutic Biocatalysis","authors":"Madeline Fuchs, Dillon T Seroski, Bethsymarie Soto Morales, Lucas Melgar, Giannia Scibilio, Abigail Ziegler, Renjie Liu, Benjamin G Keselowsky, Gregory A Hudalla","doi":"10.1101/2024.09.06.611628","DOIUrl":null,"url":null,"abstract":"Enzyme therapeutics are often compromised by poor accumulation within target tissues, necessitating high doses that can exacerbate off-target effects. We report an injectable supramolecular enzyme-peptide gel platform for prolonged local enzyme retention in vivo. The gel is based on CATCH(+/-) (Co-Assembling Tags based on CHarge-complementarity), cationic and anionic peptide pairs that form β-sheet fibrils upon mixing. Enzymes recombinantly fused to CATCH(-) peptide integrate into CATCH(+/-) β-sheet fibrils during assembly, resulting in an enzyme-peptide gel. Catalytically-active gels were fabricated with four disparate enzymes: CATCH(-)-NanoLuc luciferase, CATCH(-)-cutinase, CATCH(-)-uricase, and CATCH(-)-adenosine synthase A. CATCH(-)-cutinase gels demonstrated tunability of the platform, while CATCH(-)-NanoLuc gels demonstrated prolonged tissue retention relative to soluble enzyme. CATCH(-)-uricase gels resolved localized inflammation in a gout model, while CATCH(-)-adenosine synthase A gels suppressed localized lipopolysaccharide-induced inflammation. Modular and tunable enzyme content, coupled with prolonged tissue retention, establish CATCH enzyme-peptide gels as a generalizable vehicle for effective local therapeutic biocatalysis.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.611628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Enzyme therapeutics are often compromised by poor accumulation within target tissues, necessitating high doses that can exacerbate off-target effects. We report an injectable supramolecular enzyme-peptide gel platform for prolonged local enzyme retention in vivo. The gel is based on CATCH(+/-) (Co-Assembling Tags based on CHarge-complementarity), cationic and anionic peptide pairs that form β-sheet fibrils upon mixing. Enzymes recombinantly fused to CATCH(-) peptide integrate into CATCH(+/-) β-sheet fibrils during assembly, resulting in an enzyme-peptide gel. Catalytically-active gels were fabricated with four disparate enzymes: CATCH(-)-NanoLuc luciferase, CATCH(-)-cutinase, CATCH(-)-uricase, and CATCH(-)-adenosine synthase A. CATCH(-)-cutinase gels demonstrated tunability of the platform, while CATCH(-)-NanoLuc gels demonstrated prolonged tissue retention relative to soluble enzyme. CATCH(-)-uricase gels resolved localized inflammation in a gout model, while CATCH(-)-adenosine synthase A gels suppressed localized lipopolysaccharide-induced inflammation. Modular and tunable enzyme content, coupled with prolonged tissue retention, establish CATCH enzyme-peptide gels as a generalizable vehicle for effective local therapeutic biocatalysis.