Harmonization of Structural Brain Connectivity through Distribution Matching

Zhen Zhou, Bruce Fischl, Iman Aganj
{"title":"Harmonization of Structural Brain Connectivity through Distribution Matching","authors":"Zhen Zhou, Bruce Fischl, Iman Aganj","doi":"10.1101/2024.09.05.611489","DOIUrl":null,"url":null,"abstract":"The increasing prevalence of multi-site diffusion-weighted magnetic resonance imaging (dMRI) studies potentially offers enhanced statistical power for investigating brain structure. However, these studies face challenges due to variations in scanner hardware and acquisition protocols. While several methods exist for dMRI data harmonization, few specifically address structural brain connectivity. We introduce a new distribution-matching approach to harmonizing structural brain connectivity across different sites and scanners. We evaluate our method using structural brain connectivity data from two distinct datasets of OASIS-3 and ADNI-2, comparing its performance to the widely used ComBat method. Our approach is meant to align the statistical properties of connectivity data from these two datasets. We examine the impact of harmonization on the correlation of brain connectivity with the Mini-Mental State Examination score and age. Our results demonstrate that our distribution-matching technique more effectively harmonizes structural brain connectivity, often producing stronger and more significant correlations compared to ComBat. Qualitative assessments illustrate the desired distributional alignment of ADNI-2 with OASIS-3, while quantitative evaluations confirm robust performance. This work contributes to the growing field of dMRI harmonization, potentially improving the reliability and comparability of structural connectivity studies that combine data from different sources in neuroscientific and clinical research.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"283 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing prevalence of multi-site diffusion-weighted magnetic resonance imaging (dMRI) studies potentially offers enhanced statistical power for investigating brain structure. However, these studies face challenges due to variations in scanner hardware and acquisition protocols. While several methods exist for dMRI data harmonization, few specifically address structural brain connectivity. We introduce a new distribution-matching approach to harmonizing structural brain connectivity across different sites and scanners. We evaluate our method using structural brain connectivity data from two distinct datasets of OASIS-3 and ADNI-2, comparing its performance to the widely used ComBat method. Our approach is meant to align the statistical properties of connectivity data from these two datasets. We examine the impact of harmonization on the correlation of brain connectivity with the Mini-Mental State Examination score and age. Our results demonstrate that our distribution-matching technique more effectively harmonizes structural brain connectivity, often producing stronger and more significant correlations compared to ComBat. Qualitative assessments illustrate the desired distributional alignment of ADNI-2 with OASIS-3, while quantitative evaluations confirm robust performance. This work contributes to the growing field of dMRI harmonization, potentially improving the reliability and comparability of structural connectivity studies that combine data from different sources in neuroscientific and clinical research.
通过分布匹配协调大脑结构连接性
多部位弥散加权磁共振成像(dMRI)研究的日益普及为研究大脑结构提供了更强的统计能力。然而,由于扫描仪硬件和采集协议的差异,这些研究面临着挑战。虽然有几种 dMRI 数据协调方法,但很少有专门针对大脑结构连通性的方法。我们介绍了一种新的分布匹配方法,用于协调不同部位和扫描仪的大脑结构连通性。我们使用来自 OASIS-3 和 ADNI-2 两个不同数据集的大脑结构连通性数据对我们的方法进行了评估,并将其性能与广泛使用的 ComBat 方法进行了比较。我们的方法旨在统一来自这两个数据集的连接数据的统计属性。我们研究了协调对大脑连通性与迷你精神状态检查得分和年龄的相关性的影响。结果表明,与 ComBat 相比,我们的分布匹配技术能更有效地协调大脑结构连通性,往往能产生更强、更显著的相关性。定性评估表明,ADNI-2 与 OASIS-3 的分布匹配是理想的,而定量评估则证实了其强大的性能。这项工作为不断发展的 dMRI 协调领域做出了贡献,有可能提高神经科学和临床研究中结合不同来源数据的结构连通性研究的可靠性和可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信