Yuankai Lu, Yi Hua, Bingrui Wang, Fugiang Zhong, Andrew Theophanous, Shaharoz Tahir, Po-Yi Lee, Ian A Sigal
{"title":"Impact of elevated IOP on lamina cribrosa oxygenation; A combined experimental-computational study on monkeys","authors":"Yuankai Lu, Yi Hua, Bingrui Wang, Fugiang Zhong, Andrew Theophanous, Shaharoz Tahir, Po-Yi Lee, Ian A Sigal","doi":"10.1101/2024.09.05.609208","DOIUrl":null,"url":null,"abstract":"Purpose: Our goal is to evaluate how lamina cribrosa (LC) oxygenation is affected by the tissue distortions resulting from elevated IOP. Design: Experimental study on monkeys\nSubjects: Four healthy monkey eyes with OCT scans with IOP of 10 to 50 mmHg, and then with histological sections of LC.\nMethods: Since in-vivo LC oxygenation measurement is not yet possible, we used 3D eye-specific numerical models of the LC vasculature which we subjected to experimentally-derived tissue deformations. We reconstructed 3D models of the LC vessel networks of 4 healthy monkey eyes from histological sections. We also obtained in-vivo IOP-induced tissue deformations from a healthy monkey using OCT images and digital volume correlation analysis techniques. The extent that LC vessels distort under a given OCT-derived tissue strain remains unknown. We therefore evaluated two biomechanics-based mapping techniques: cross-sectional and isotropic. The hemodynamics and oxygenations of the four vessel networks were simulated for deformations at several IOPs up to 60mmHg. The results were used to determine the effects of IOP on LC oxygen supply, assorting the extent of tissue mild and severe hypoxia. Main Outcome Measures: IOP-induced deformation, vasculature structure, blood supply, and oxygen supply for LC region\nResult: IOP-induced deformations reduced LC oxygenation significantly. More than 20% of LC tissue suffered from mild hypoxia when IOP reached 30 mmHg. Extreme IOP(>50mmHg) led to large severe hypoxia regions (>30%) in the isotropic mapping cases.\nConclusion: Our models predicted that moderately elevated IOP can lead to mild hypoxia in a substantial part of the LC, which, if sustained chronically, may contribute to neural tissue damage. For extreme IOP elevations, severe hypoxia was predicted, which would potentially cause more immediate damage. Our findings suggest that despite the remarkable LC vascular robustness, IOP-induced distortions can potentially contribute to glaucomatous neuropathy.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.609208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Our goal is to evaluate how lamina cribrosa (LC) oxygenation is affected by the tissue distortions resulting from elevated IOP. Design: Experimental study on monkeys
Subjects: Four healthy monkey eyes with OCT scans with IOP of 10 to 50 mmHg, and then with histological sections of LC.
Methods: Since in-vivo LC oxygenation measurement is not yet possible, we used 3D eye-specific numerical models of the LC vasculature which we subjected to experimentally-derived tissue deformations. We reconstructed 3D models of the LC vessel networks of 4 healthy monkey eyes from histological sections. We also obtained in-vivo IOP-induced tissue deformations from a healthy monkey using OCT images and digital volume correlation analysis techniques. The extent that LC vessels distort under a given OCT-derived tissue strain remains unknown. We therefore evaluated two biomechanics-based mapping techniques: cross-sectional and isotropic. The hemodynamics and oxygenations of the four vessel networks were simulated for deformations at several IOPs up to 60mmHg. The results were used to determine the effects of IOP on LC oxygen supply, assorting the extent of tissue mild and severe hypoxia. Main Outcome Measures: IOP-induced deformation, vasculature structure, blood supply, and oxygen supply for LC region
Result: IOP-induced deformations reduced LC oxygenation significantly. More than 20% of LC tissue suffered from mild hypoxia when IOP reached 30 mmHg. Extreme IOP(>50mmHg) led to large severe hypoxia regions (>30%) in the isotropic mapping cases.
Conclusion: Our models predicted that moderately elevated IOP can lead to mild hypoxia in a substantial part of the LC, which, if sustained chronically, may contribute to neural tissue damage. For extreme IOP elevations, severe hypoxia was predicted, which would potentially cause more immediate damage. Our findings suggest that despite the remarkable LC vascular robustness, IOP-induced distortions can potentially contribute to glaucomatous neuropathy.