PSMA-specific CAR-engineered macrophages for therapy of prostate cancer

Yangli Xu, Duoli Xie, Chunhao Cao, Yue Ju, Xinxin Chen, Lili Guan, Xuelong Li, Luo Zhang, Chao Liang, Xiushan Yin
{"title":"PSMA-specific CAR-engineered macrophages for therapy of prostate cancer","authors":"Yangli Xu, Duoli Xie, Chunhao Cao, Yue Ju, Xinxin Chen, Lili Guan, Xuelong Li, Luo Zhang, Chao Liang, Xiushan Yin","doi":"10.1101/2024.09.07.611792","DOIUrl":null,"url":null,"abstract":"Chimeric antigen receptor (CAR)-modified macrophages (CAR-Ms) are a promising approach for the treatment of solid tumors due to its high infiltration and immune-regulation activity. Prostate cancer is a typical solid tumor associated with highly immunosuppressive microenvironment. To date, the potential application of CAR-M cell therapy in prostate cancer has been infrequently explored. The prostate-specific membrane antigen (PSMA) functions as a specific biomarker for prostate cancer. In this study, we assessed the antitumor efficacy of PSMA-targeted CAR-Ms in preclinical models. CAR-Ms were engineered to express a PSMA-specific single-chain variable fragment (scFv) and co-stimulatory domains. In vitro data demonstrated specific cytotoxicity of CAR-Ms against PSMA-expressing prostate cancer cells, which was further supported by transcriptome analysis demonstrating the pro-inflammatory phenotypes of CAR-Ms. In vivo studies using xenograft mouse models confirmed significant tumor regression after administration of PSMA-targeted CAR-Ms compared to controls. Histopathological analysis showed infiltration of CAR-Ms into tumor tissues without off-target toxicity. These results highlight the strong antitumor activity and safety of PSMA-targeted CAR-Ms, supporting their potential as a new immunotherapy for prostate cancer.","PeriodicalId":501308,"journal":{"name":"bioRxiv - Bioengineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.07.611792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chimeric antigen receptor (CAR)-modified macrophages (CAR-Ms) are a promising approach for the treatment of solid tumors due to its high infiltration and immune-regulation activity. Prostate cancer is a typical solid tumor associated with highly immunosuppressive microenvironment. To date, the potential application of CAR-M cell therapy in prostate cancer has been infrequently explored. The prostate-specific membrane antigen (PSMA) functions as a specific biomarker for prostate cancer. In this study, we assessed the antitumor efficacy of PSMA-targeted CAR-Ms in preclinical models. CAR-Ms were engineered to express a PSMA-specific single-chain variable fragment (scFv) and co-stimulatory domains. In vitro data demonstrated specific cytotoxicity of CAR-Ms against PSMA-expressing prostate cancer cells, which was further supported by transcriptome analysis demonstrating the pro-inflammatory phenotypes of CAR-Ms. In vivo studies using xenograft mouse models confirmed significant tumor regression after administration of PSMA-targeted CAR-Ms compared to controls. Histopathological analysis showed infiltration of CAR-Ms into tumor tissues without off-target toxicity. These results highlight the strong antitumor activity and safety of PSMA-targeted CAR-Ms, supporting their potential as a new immunotherapy for prostate cancer.
用于治疗前列腺癌的 PSMA 特异性 CAR 工程巨噬细胞
嵌合抗原受体(CAR)修饰的巨噬细胞(CAR-Ms)具有高浸润性和免疫调节活性,是治疗实体瘤的一种很有前景的方法。前列腺癌是一种典型的实体瘤,伴有高度免疫抑制的微环境。迄今为止,CAR-M 细胞疗法在前列腺癌中的潜在应用还鲜有探索。前列腺特异性膜抗原(PSMA)是前列腺癌的特异性生物标志物。在这项研究中,我们评估了PSMA靶向CAR-Ms在临床前模型中的抗肿瘤疗效。CAR-Ms被设计为表达PSMA特异性单链可变片段(scFv)和共刺激结构域。体外数据显示,CAR-Ms 对表达 PSMA 的前列腺癌细胞具有特异性细胞毒性,转录组分析进一步证实了 CAR-Ms 的促炎表型。 使用异种移植小鼠模型进行的体内研究证实,与对照组相比,服用 PSMA 靶向 CAR-Ms 后肿瘤明显缩小。组织病理学分析表明,CAR-Ms 在肿瘤组织中的浸润没有脱靶毒性。这些结果凸显了 PSMA 靶向 CAR-Ms 强大的抗肿瘤活性和安全性,支持其作为前列腺癌新型免疫疗法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信