Auxiliary Field Deformations of (Semi-)Symmetric Space Sigma Models

Daniele Bielli, Christian Ferko, Liam Smith, Gabriele Tartaglino-Mazzucchelli
{"title":"Auxiliary Field Deformations of (Semi-)Symmetric Space Sigma Models","authors":"Daniele Bielli, Christian Ferko, Liam Smith, Gabriele Tartaglino-Mazzucchelli","doi":"arxiv-2409.05704","DOIUrl":null,"url":null,"abstract":"We generalize the auxiliary field deformations of the principal chiral model\n(PCM) introduced in arXiv:2405.05899 and arXiv:2407.16338 to sigma models whose\ntarget manifolds are symmetric or semi-symmetric spaces, including a\nWess-Zumino term in the latter case. This gives rise to a new infinite family\nof classically integrable $\\mathbb{Z}_2$ and $\\mathbb{Z}_4$ coset models of the\nform which are of interest in applications of integrability to worldsheet\nstring theory and holography. We demonstrate that every theory in this infinite\nclass admits a zero-curvature representation for its equations of motion by\nexhibiting a Lax connection.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the auxiliary field deformations of the principal chiral model (PCM) introduced in arXiv:2405.05899 and arXiv:2407.16338 to sigma models whose target manifolds are symmetric or semi-symmetric spaces, including a Wess-Zumino term in the latter case. This gives rise to a new infinite family of classically integrable $\mathbb{Z}_2$ and $\mathbb{Z}_4$ coset models of the form which are of interest in applications of integrability to worldsheet string theory and holography. We demonstrate that every theory in this infinite class admits a zero-curvature representation for its equations of motion by exhibiting a Lax connection.
半)对称空间西格玛模型的辅助场变形
我们将arXiv:2405.05899和arXiv:2407.16338中介绍的主手性模型(PCM)的辅助场变形推广到西格玛模型,后者的目标流形是对称或半对称空间,包括一个韦斯-祖米诺项。这就产生了一个新的无限经典可积分的$\mathbb{Z}_2$和$\mathbb{Z}_4$共集模型家族,它们在世界表弦理论和全息学的可积分性应用中具有重要意义。我们证明,这个无穷类中的每一个理论都能通过显示拉克斯连接为其运动方程提供零曲率表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信