Zero Flux Localization: Magic Revealed

Alireza Parhizkar, Victor Galitski
{"title":"Zero Flux Localization: Magic Revealed","authors":"Alireza Parhizkar, Victor Galitski","doi":"arxiv-2409.05942","DOIUrl":null,"url":null,"abstract":"Flat bands correspond to the spatial localization of a quantum particle\nmoving in a field with discrete or continuous translational invariance. The\ncanonical example is the flat Landau levels in a homogeneous magnetic field.\nSeveral significant problems -- including flat bands in moir\\'e structures --\nare related to the problem of a particle moving in an inhomogeneous magnetic\nfield with zero total flux. We demonstrate that while perfectly flat bands in\nsuch cases are impossible, the introduction of a \"non-Abelian component\" -- a\nspin field with zero total curvature -- can lead to perfect localization.\nSeveral exactly solvable models are constructed: (i) a half-space up/down field\nwith a sharp 1D boundary; (ii) an alternating up/down field periodic in one\ndirection on a cylinder; and (iii) a doubly periodic alternating field on a\ntorus. The exact solution on the torus is expressed in terms of elliptic\nfunctions. It is shown that flat bands are only possible for certain magic\nvalues of the field corresponding to a quantized flux through an individual\ntile. These exact solutions clarify the simple structure underlying flat bands\nin moir\\'e materials and provide a springboard for constructing a novel class\nof fractional quantum Hall states.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Flat bands correspond to the spatial localization of a quantum particle moving in a field with discrete or continuous translational invariance. The canonical example is the flat Landau levels in a homogeneous magnetic field. Several significant problems -- including flat bands in moir\'e structures -- are related to the problem of a particle moving in an inhomogeneous magnetic field with zero total flux. We demonstrate that while perfectly flat bands in such cases are impossible, the introduction of a "non-Abelian component" -- a spin field with zero total curvature -- can lead to perfect localization. Several exactly solvable models are constructed: (i) a half-space up/down field with a sharp 1D boundary; (ii) an alternating up/down field periodic in one direction on a cylinder; and (iii) a doubly periodic alternating field on a torus. The exact solution on the torus is expressed in terms of elliptic functions. It is shown that flat bands are only possible for certain magic values of the field corresponding to a quantized flux through an individual tile. These exact solutions clarify the simple structure underlying flat bands in moir\'e materials and provide a springboard for constructing a novel class of fractional quantum Hall states.
零流量》本地化:魔法揭秘
平带对应于在具有离散或连续平移不变性的场中运动的量子粒子的空间定位。几个重要问题--包括莫尔结构中的平带--与粒子在总磁通量为零的不均匀磁场中运动的问题有关。我们证明,虽然在这种情况下不可能出现完美的平带,但引入 "非阿贝尔成分"--总曲率为零的磁场--可以导致完美的局部化。我们构建了几个可精确求解的模型:(i) 具有尖锐一维边界的半空间上下磁场;(ii) 圆柱上周期性单向上下交变磁场;(iii) 环上的双周期交变磁场。环上的精确解用椭圆函数表示。结果表明,平带只可能出现在与通过单个面的量子化通量相对应的场的某些神奇值上。这些精确解澄清了莫尔材料平带的简单结构,并为构建一类新的分数量子霍尔态提供了跳板。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信