Traveling Motility of Actin Lamellar Fragments Under spontaneous symmetry breaking

Claudia García, Martina Magliocca, Nicolas Meunier
{"title":"Traveling Motility of Actin Lamellar Fragments Under spontaneous symmetry breaking","authors":"Claudia García, Martina Magliocca, Nicolas Meunier","doi":"arxiv-2409.05762","DOIUrl":null,"url":null,"abstract":"Cell motility is connected to the spontaneous symmetry breaking of a circular\nshape. In https://doi.org/10.1103/PhysRevLett.110.078102, Blanch-Mercader and\nCasademunt perfomed a nonlinear analysis of the minimal model proposed by\nCallan and Jones https://doi.org/10.1103/PhysRevLett.100.258106 and numerically\nconjectured the existence of traveling solutions once that symmetry is broken.\nIn this work, we prove analytically that conjecture by means of nonlinear\nbifurcation techniques.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cell motility is connected to the spontaneous symmetry breaking of a circular shape. In https://doi.org/10.1103/PhysRevLett.110.078102, Blanch-Mercader and Casademunt perfomed a nonlinear analysis of the minimal model proposed by Callan and Jones https://doi.org/10.1103/PhysRevLett.100.258106 and numerically conjectured the existence of traveling solutions once that symmetry is broken. In this work, we prove analytically that conjecture by means of nonlinear bifurcation techniques.
自发对称破缺下肌动蛋白片段的移动性
细胞运动与圆形的自发对称破缺有关。在 https://doi.org/10.1103/PhysRevLett.110.078102,Blanch-Mercader 和 Casademunt 对 Callan 和 Jones 提出的最小模型进行了非线性分析 https://doi.org/10.1103/PhysRevLett.100.258106,并从数值上猜想,一旦对称性被打破,就会存在行进解。在这项工作中,我们通过非线性分岔技术分析证明了这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信