Derived algebraic geometry of 2d lattice Yang-Mills theory

Marco Benini, Tomás Fernández, Alexander Schenkel
{"title":"Derived algebraic geometry of 2d lattice Yang-Mills theory","authors":"Marco Benini, Tomás Fernández, Alexander Schenkel","doi":"arxiv-2409.06873","DOIUrl":null,"url":null,"abstract":"A derived algebraic geometric study of classical $\\mathrm{GL}_n$-Yang-Mills\ntheory on the $2$-dimensional square lattice $\\mathbb{Z}^2$ is presented. The\nderived critical locus of the Wilson action is described and its local data\nsupported in rectangular subsets $V =[a,b]\\times [c,d]\\subseteq \\mathbb{Z}^2$\nwith both sides of length $\\geq 2$ is extracted. A locally constant\ndg-category-valued prefactorization algebra on $\\mathbb{Z}^2$ is constructed\nfrom the dg-categories of perfect complexes on the derived stacks of local\ndata.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A derived algebraic geometric study of classical $\mathrm{GL}_n$-Yang-Mills theory on the $2$-dimensional square lattice $\mathbb{Z}^2$ is presented. The derived critical locus of the Wilson action is described and its local data supported in rectangular subsets $V =[a,b]\times [c,d]\subseteq \mathbb{Z}^2$ with both sides of length $\geq 2$ is extracted. A locally constant dg-category-valued prefactorization algebra on $\mathbb{Z}^2$ is constructed from the dg-categories of perfect complexes on the derived stacks of local data.
二维晶格杨-米尔斯理论的衍生代数几何
本文介绍了在 2 美元维正方形网格 $\mathbb{Z}^2$ 上经典 $\mathrm{GL}_n$ 扬-米尔理论的衍生代数几何研究。描述了威尔逊作用的临界点,并提取了其在两边长度均为 $\geq 2$ 的矩形子集 $V =[a,b]\times [c,d]\subseteq \mathbb{Z}^2$ 中的局部数据支持。从局部数据的派生堆栈上的完备复数的 dg 类中构造了一个关于 $\mathbb{Z}^2$ 的局部恒定的 dg 类值的前因式分解代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信