Existence of higher degree minimizers in the magnetic skyrmion problem

Cyrill B. Muratov, Theresa M. Simon, Valeriy V. Slastikov
{"title":"Existence of higher degree minimizers in the magnetic skyrmion problem","authors":"Cyrill B. Muratov, Theresa M. Simon, Valeriy V. Slastikov","doi":"arxiv-2409.07205","DOIUrl":null,"url":null,"abstract":"We demonstrate existence of topologically nontrivial energy minimizing maps\nof a given positive degree from bounded domains in the plane to $\\mathbb S^2$\nin a variational model describing magnetizations in ultrathin ferromagnetic\nfilms with Dzyaloshinskii-Moriya interaction. Our strategy is to insert tiny\ntruncated Belavin-Polyakov profiles in carefully chosen locations of lower\ndegree objects such that the total energy increase lies strictly below the\nexpected Dirichlet energy contribution, ruling out loss of degree in the limits\nof minimizing sequences. The argument requires that the domain be either\nsufficiently large or sufficiently slender to accommodate a prescribed degree.\nWe also show that these higher degree minimizers concentrate on point-like\nskyrmionic configurations in a suitable parameter regime.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate existence of topologically nontrivial energy minimizing maps of a given positive degree from bounded domains in the plane to $\mathbb S^2$ in a variational model describing magnetizations in ultrathin ferromagnetic films with Dzyaloshinskii-Moriya interaction. Our strategy is to insert tiny truncated Belavin-Polyakov profiles in carefully chosen locations of lower degree objects such that the total energy increase lies strictly below the expected Dirichlet energy contribution, ruling out loss of degree in the limits of minimizing sequences. The argument requires that the domain be either sufficiently large or sufficiently slender to accommodate a prescribed degree. We also show that these higher degree minimizers concentrate on point-like skyrmionic configurations in a suitable parameter regime.
磁天幕问题中高阶最小值的存在性
我们证明了在描述具有 Dzyaloshinskii-Moriya 相互作用的超薄铁磁薄膜中磁化的变分模型中,存在拓扑上非难的能量最小化映射,即从平面上的有界域到 $\mathbb S^2$ 的给定正度映射。我们的策略是在精心选择的低度对象位置插入微小截断的贝拉文-波利亚科夫剖面,从而使总能量增加严格低于预期的迪里夏特能量贡献,排除了最小化序列极限中的度损失。我们还证明,在合适的参数体系中,这些高阶最小化序列集中于点-相似基里米尼构型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信