Option Pricing with Stochastic Volatility, Equity Premium, and Interest Rates

Nicole Hao, Echo Li, Diep Luong-Le
{"title":"Option Pricing with Stochastic Volatility, Equity Premium, and Interest Rates","authors":"Nicole Hao, Echo Li, Diep Luong-Le","doi":"arxiv-2408.15416","DOIUrl":null,"url":null,"abstract":"This paper presents a new model for options pricing. The Black-Scholes-Merton\n(BSM) model plays an important role in financial options pricing. However, the\nBSM model assumes that the risk-free interest rate, volatility, and equity\npremium are constant, which is unrealistic in the real market. To address this,\nour paper considers the time-varying characteristics of those parameters. Our\nmodel integrates elements of the BSM model, the Heston (1993) model for\nstochastic variance, the Vasicek model (1977) for stochastic interest rates,\nand the Campbell and Viceira model (1999, 2001) for stochastic equity premium.\nWe derive a linear second-order parabolic PDE and extend our model to encompass\nfixed-strike Asian options, yielding a new PDE. In the absence of closed-form\nsolutions for any options from our new model, we utilize finite difference\nmethods to approximate prices for European call and up-and-out barrier options,\nand outline the numerical implementation for fixed-strike Asian call options.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new model for options pricing. The Black-Scholes-Merton (BSM) model plays an important role in financial options pricing. However, the BSM model assumes that the risk-free interest rate, volatility, and equity premium are constant, which is unrealistic in the real market. To address this, our paper considers the time-varying characteristics of those parameters. Our model integrates elements of the BSM model, the Heston (1993) model for stochastic variance, the Vasicek model (1977) for stochastic interest rates, and the Campbell and Viceira model (1999, 2001) for stochastic equity premium. We derive a linear second-order parabolic PDE and extend our model to encompass fixed-strike Asian options, yielding a new PDE. In the absence of closed-form solutions for any options from our new model, we utilize finite difference methods to approximate prices for European call and up-and-out barrier options, and outline the numerical implementation for fixed-strike Asian call options.
随机波动、股票溢价和利率的期权定价
本文提出了一种新的期权定价模型。布莱克-斯科尔斯-默顿(BSM)模型在金融期权定价中发挥着重要作用。然而,BSM 模型假设无风险利率、波动率和股票溢价为常数,这在现实市场中并不现实。为了解决这个问题,我们的论文考虑了这些参数的时变特征。我们的模型整合了 BSM 模型、Heston(1993)随机方差模型、Vasicek(1977)随机利率模型以及 Campbell 和 Viceira(1999,2001)随机股票溢价模型的元素。由于我们的新模型中没有任何期权的闭式解,我们利用有限差分法来近似计算欧式看涨期权和涨跌停板期权的价格,并概述了固定罢工亚洲看涨期权的数值实现方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信