ODE/IM correspondence in the semiclassical limit: Large degree asymptotics of the spectral determinants for the ground state potential

Gabriele Degano
{"title":"ODE/IM correspondence in the semiclassical limit: Large degree asymptotics of the spectral determinants for the ground state potential","authors":"Gabriele Degano","doi":"arxiv-2409.07866","DOIUrl":null,"url":null,"abstract":"We study a Schr\\\"odinger-like equation for the anharmonic potential $x^{2\n\\alpha}+\\ell(\\ell+1) x^{-2}-E$ when the anharmonicity $\\alpha$ goes to\n$+\\infty$. When $E$ and $\\ell$ vary in bounded domains, we show that the\nspectral determinant for the central connection problem converges to a special\nfunction written in terms of a Bessel function of order $\\ell+\\frac{1}{2}$ and\nits zeros converge to the zeros of that Bessel function. We then study the\nregime in which $E$ and $\\ell$ grow large as well, scaling as $E\\sim \\alpha^2\n\\varepsilon^2$ and $\\ell\\sim \\alpha p$. When $\\varepsilon$ is greater than $1$\nwe show that the spectral determinant for the central connection problem is a\nrapidly oscillating function whose zeros tend to be distributed according to\nthe continuous density law\n$\\frac{2p}{\\pi}\\frac{\\sqrt{\\varepsilon^2-1}}{\\varepsilon}$. When $\\varepsilon$\nis close to $1$ we show that the spectral determinant converges to a function\nexpressed in terms of the Airy function $\\operatorname{Ai}(-)$ and its zeros\nconverge to the zeros of that function. This work is motivated by and has\napplications to the ODE/IM correspondence for the quantum KdV model.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a Schr\"odinger-like equation for the anharmonic potential $x^{2 \alpha}+\ell(\ell+1) x^{-2}-E$ when the anharmonicity $\alpha$ goes to $+\infty$. When $E$ and $\ell$ vary in bounded domains, we show that the spectral determinant for the central connection problem converges to a special function written in terms of a Bessel function of order $\ell+\frac{1}{2}$ and its zeros converge to the zeros of that Bessel function. We then study the regime in which $E$ and $\ell$ grow large as well, scaling as $E\sim \alpha^2 \varepsilon^2$ and $\ell\sim \alpha p$. When $\varepsilon$ is greater than $1$ we show that the spectral determinant for the central connection problem is a rapidly oscillating function whose zeros tend to be distributed according to the continuous density law $\frac{2p}{\pi}\frac{\sqrt{\varepsilon^2-1}}{\varepsilon}$. When $\varepsilon$ is close to $1$ we show that the spectral determinant converges to a function expressed in terms of the Airy function $\operatorname{Ai}(-)$ and its zeros converge to the zeros of that function. This work is motivated by and has applications to the ODE/IM correspondence for the quantum KdV model.
半经典极限中的 ODE/IM 对应:基态势的谱决定簇的大度渐近性
我们研究了当anharmonicity $\alpha$ 达到$+\infty$时,anharmonic potential $x^{2\alpha}+\ell(\ell+1) x^{-2}-E$ 的类似薛定谔方程。当 $E$ 和 $\ell$ 在有界域中变化时,我们证明中心连接问题的谱行列式收敛于一个特殊函数,这个函数是用阶为 $\ell+\frac{1}{2}$ 的贝塞尔函数写成的,它的零点收敛于贝塞尔函数的零点。然后,我们研究了在 $E$ 和 $ell$ 也增长得很大的情况下,$E\sim \alpha^2\varepsilon^2$ 和 $\ell\sim \alpha p$ 的缩放。当 $\varepsilon$ 大于 $1$时,我们证明中心连接问题的谱行列式是一个快速振荡函数,其零点趋向于根据连续密度定律分布$frac{2p}{\pi}\frac{\sqrt{\varepsilon^2-1}}\{varepsilon}$。当 $\varepsilon$ 接近 $1$时,我们证明谱行列式收敛于一个用 Airy 函数 $\operatorname{Ai}(-)$ 表示的函数,并且其零点收敛于该函数的零点。这项工作受到量子 KdV 模型的 ODE/IM 对应关系的启发,并将其应用于量子 KdV 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信