Delay ordinary differential equations: from Lagrangian approach to Hamiltonian approach

Vladimir Dorodnitsyn, Roman Kozlov, Sergey Meleshko
{"title":"Delay ordinary differential equations: from Lagrangian approach to Hamiltonian approach","authors":"Vladimir Dorodnitsyn, Roman Kozlov, Sergey Meleshko","doi":"arxiv-2409.08165","DOIUrl":null,"url":null,"abstract":"The paper suggests a Hamiltonian formulation for delay ordinary differential\nequations (DODEs). Such equations are related to DODEs with a Lagrangian\nformulation via a delay analog of the Legendre transformation. The Hamiltonian\ndelay operator identity is established. It states the relationship for the\ninvariance of a delay Hamiltonian functional, appropriate delay variational\nequations, and their conserved quantities. The identity is used to formulate a\nNoether-type theorem, which provides first integrals for Hamiltonian DODEs with\nsymmetries. The relationship between the invariance of the delay Hamiltonian\nfunctional and the invariance of the delay variational equations is also\nexamined. Several examples illustrate the theoretical results.","PeriodicalId":501312,"journal":{"name":"arXiv - MATH - Mathematical Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper suggests a Hamiltonian formulation for delay ordinary differential equations (DODEs). Such equations are related to DODEs with a Lagrangian formulation via a delay analog of the Legendre transformation. The Hamiltonian delay operator identity is established. It states the relationship for the invariance of a delay Hamiltonian functional, appropriate delay variational equations, and their conserved quantities. The identity is used to formulate a Noether-type theorem, which provides first integrals for Hamiltonian DODEs with symmetries. The relationship between the invariance of the delay Hamiltonian functional and the invariance of the delay variational equations is also examined. Several examples illustrate the theoretical results.
延迟常微分方程:从拉格朗日方法到哈密顿方法
本文提出了延迟常微分方程(DODE)的哈密顿公式。通过 Legendre 变换的延迟类似形式,这些方程与具有拉格朗日形式的 DODE 相关联。建立了汉密尔顿-勒让德雷算子同一性。它说明了延迟哈密顿函数的不变性、适当的延迟变分方程及其守恒量之间的关系。利用该同一性提出了一个 "Noether "型定理,为具有对称性的哈密顿 DODE 提供了第一积分。此外,还考察了延迟哈密顿函数的不变性与延迟变分方程的不变性之间的关系。几个例子说明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信