Programmable Lipid Nanoparticles for Precision Drug Delivery: A Four-Domain Model Perspective

Zhaoyu Liu, Jingxun Chen, Mingkun Xu, David H. Gracias, Ken-Tye Yong, Yuanyuan Wei, Ho-Pui Ho
{"title":"Programmable Lipid Nanoparticles for Precision Drug Delivery: A Four-Domain Model Perspective","authors":"Zhaoyu Liu, Jingxun Chen, Mingkun Xu, David H. Gracias, Ken-Tye Yong, Yuanyuan Wei, Ho-Pui Ho","doi":"arxiv-2408.05695","DOIUrl":null,"url":null,"abstract":"Programmable lipid nanoparticles (LNPs) offer precise spatiotemporal control\nover drug distribution and release, a critical advancement for treating complex\ndiseases like cancer and genetic disorders. While existing reviews offer\nextensive insights into LNP development, this work introduces a novel model\nthat dissects key components of LNP design, providing a framework to enhance\nthe rational design of programmable LNPs. This review introduces a novel\nFour-Domain Model - Architecture, Interface, Payload, and Dispersal - providing\na modular perspective that emphasizes the programmability of LNPs. We explore\nthe dynamics between LNPs components and their environment throughout their\nlifecycle, focusing on thermodynamic stability during synthesis, storage,\ndelivery, and drug release. Through these four distinct but interconnected\ndomains, we introduce the concept of input stimuli, functional components, and\noutput responses. This modular approach offers new perspectives for the\nrational design of programmable nanocarriers for exquisite control over payload\nrelease while minimizing off-target effects. Advances in bioinspired design\nprinciples could lead to LNPs that mimic natural biological systems, enhancing\ntheir biocompatibility and functionality. This review summarizes recent\nadvancements, identifies challenges, and offers outlooks for programmable LNPs,\nemphasizing their potential to evolve into more intelligent, naturally\nintegrated systems that enhance scalability and reduce side effects.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"419 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Programmable lipid nanoparticles (LNPs) offer precise spatiotemporal control over drug distribution and release, a critical advancement for treating complex diseases like cancer and genetic disorders. While existing reviews offer extensive insights into LNP development, this work introduces a novel model that dissects key components of LNP design, providing a framework to enhance the rational design of programmable LNPs. This review introduces a novel Four-Domain Model - Architecture, Interface, Payload, and Dispersal - providing a modular perspective that emphasizes the programmability of LNPs. We explore the dynamics between LNPs components and their environment throughout their lifecycle, focusing on thermodynamic stability during synthesis, storage, delivery, and drug release. Through these four distinct but interconnected domains, we introduce the concept of input stimuli, functional components, and output responses. This modular approach offers new perspectives for the rational design of programmable nanocarriers for exquisite control over payload release while minimizing off-target effects. Advances in bioinspired design principles could lead to LNPs that mimic natural biological systems, enhancing their biocompatibility and functionality. This review summarizes recent advancements, identifies challenges, and offers outlooks for programmable LNPs, emphasizing their potential to evolve into more intelligent, naturally integrated systems that enhance scalability and reduce side effects.
用于精准给药的可编程脂质纳米颗粒:四域模型视角
可编程脂质纳米粒子(LNPs)可精确控制药物分布和释放的时空,是治疗癌症和遗传性疾病等复杂疾病的重要进展。现有的综述对 LNP 的开发提供了广泛的见解,而本研究则引入了一个新颖的模型,剖析了 LNP 设计的关键要素,为加强可编程 LNP 的合理设计提供了一个框架。本综述介绍了一个新颖的四域模型--架构、接口、有效载荷和分散--提供了一个强调 LNP 可编程性的模块化视角。我们探讨了 LNPs 组件及其环境在整个生命周期中的动态变化,重点关注合成、储存、输送和药物释放过程中的热力学稳定性。通过这四个不同但相互关联的领域,我们引入了输入刺激、功能成分和输出响应的概念。这种模块化方法为可编程纳米载体的治疗设计提供了新的视角,从而在最大限度地减少脱靶效应的同时,实现对有效载荷释放的精妙控制。生物启发设计原理的进步可使 LNPs 模仿自然生物系统,增强其生物相容性和功能性。这篇综述总结了可编程 LNPs 的最新进展,指出了其面临的挑战,并对其前景进行了展望,强调它们有可能发展成为更智能、更自然的集成系统,从而提高可扩展性并减少副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信