S-MolSearch: 3D Semi-supervised Contrastive Learning for Bioactive Molecule Search

Gengmo Zhou, Zhen Wang, Feng Yu, Guolin Ke, Zhewei Wei, Zhifeng Gao
{"title":"S-MolSearch: 3D Semi-supervised Contrastive Learning for Bioactive Molecule Search","authors":"Gengmo Zhou, Zhen Wang, Feng Yu, Guolin Ke, Zhewei Wei, Zhifeng Gao","doi":"arxiv-2409.07462","DOIUrl":null,"url":null,"abstract":"Virtual Screening is an essential technique in the early phases of drug\ndiscovery, aimed at identifying promising drug candidates from vast molecular\nlibraries. Recently, ligand-based virtual screening has garnered significant\nattention due to its efficacy in conducting extensive database screenings\nwithout relying on specific protein-binding site information. Obtaining binding\naffinity data for complexes is highly expensive, resulting in a limited amount\nof available data that covers a relatively small chemical space. Moreover,\nthese datasets contain a significant amount of inconsistent noise. It is\nchallenging to identify an inductive bias that consistently maintains the\nintegrity of molecular activity during data augmentation. To tackle these\nchallenges, we propose S-MolSearch, the first framework to our knowledge, that\nleverages molecular 3D information and affinity information in semi-supervised\ncontrastive learning for ligand-based virtual screening. Drawing on the\nprinciples of inverse optimal transport, S-MolSearch efficiently processes both\nlabeled and unlabeled data, training molecular structural encoders while\ngenerating soft labels for the unlabeled data. This design allows S-MolSearch\nto adaptively utilize unlabeled data within the learning process. Empirically,\nS-MolSearch demonstrates superior performance on widely-used benchmarks\nLIT-PCBA and DUD-E. It surpasses both structure-based and ligand-based virtual\nscreening methods for enrichment factors across 0.5%, 1% and 5%.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual Screening is an essential technique in the early phases of drug discovery, aimed at identifying promising drug candidates from vast molecular libraries. Recently, ligand-based virtual screening has garnered significant attention due to its efficacy in conducting extensive database screenings without relying on specific protein-binding site information. Obtaining binding affinity data for complexes is highly expensive, resulting in a limited amount of available data that covers a relatively small chemical space. Moreover, these datasets contain a significant amount of inconsistent noise. It is challenging to identify an inductive bias that consistently maintains the integrity of molecular activity during data augmentation. To tackle these challenges, we propose S-MolSearch, the first framework to our knowledge, that leverages molecular 3D information and affinity information in semi-supervised contrastive learning for ligand-based virtual screening. Drawing on the principles of inverse optimal transport, S-MolSearch efficiently processes both labeled and unlabeled data, training molecular structural encoders while generating soft labels for the unlabeled data. This design allows S-MolSearch to adaptively utilize unlabeled data within the learning process. Empirically, S-MolSearch demonstrates superior performance on widely-used benchmarks LIT-PCBA and DUD-E. It surpasses both structure-based and ligand-based virtual screening methods for enrichment factors across 0.5%, 1% and 5%.
S-MolSearch:用于生物活性分子搜索的 3D 半监督对比学习
虚拟筛选是药物发现早期阶段的一项重要技术,旨在从庞大的分子库中找出有潜力的候选药物。最近,基于配体的虚拟筛选因其无需依赖特定蛋白质结合位点信息即可进行广泛数据库筛选的功效而备受关注。获取复合物的结合亲和力数据非常昂贵,导致可用数据量有限,涵盖的化学空间相对较小。此外,这些数据集还包含大量不一致的噪声。在数据扩增过程中,如何确定一种能始终保持分子活性完整性的归纳偏差是一项挑战。为了应对这些挑战,我们提出了 S-MolSearch,这是我们所知的第一个框架,它在基于配体的虚拟筛选的半监督对比学习中充分利用了分子三维信息和亲和力信息。借鉴逆最优传输原理,S-MolSearch 可以高效处理有标记和无标记数据,在训练分子结构编码器的同时为无标记数据生成软标记。这种设计使 S-MolSearch 能够在学习过程中适应性地利用未标记数据。从经验上看,S-MolSearch 在广泛使用的基准 LIT-PCBA 和 DUD-E 上表现出了卓越的性能。在富集因子 0.5%、1% 和 5%方面,它超过了基于结构和配体的虚拟筛选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信