Mayer-homology learning prediction of protein-ligand binding affinities

Hongsong Feng, Li Shen, Jian Liu, Guo-Wei Wei
{"title":"Mayer-homology learning prediction of protein-ligand binding affinities","authors":"Hongsong Feng, Li Shen, Jian Liu, Guo-Wei Wei","doi":"arxiv-2408.13299","DOIUrl":null,"url":null,"abstract":"Artificial intelligence-assisted drug design is revolutionizing the\npharmaceutical industry. Effective molecular features are crucial for accurate\nmachine learning predictions, and advanced mathematics plays a key role in\ndesigning these features. Persistent homology theory, which equips topological\ninvariants with persistence, provides valuable insights into molecular\nstructures. The calculation of Betti numbers is based on differential that\ntypically satisfy \\(d^2 = 0\\). Our recent work has extended this concept by\nemploying Mayer homology with a generalized differential that satisfies \\(d^N =\n0\\) for \\(N \\geq 2\\), leading to the development of persistent Mayer homology\n(PMH) theory and richer topological information across various scales. In this\nstudy, we utilize PMH to create a novel multiscale topological vectorization\nfor molecular representation, offering valuable tools for descriptive and\npredictive analysis in molecular data and machine learning prediction.\nSpecifically, benchmark tests on established protein-ligand datasets, including\nPDBbind-2007, PDBbind-2013, and PDBbind-2016, demonstrate the superior\nperformance of our Mayer homology models in predicting protein-ligand binding\naffinities.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence-assisted drug design is revolutionizing the pharmaceutical industry. Effective molecular features are crucial for accurate machine learning predictions, and advanced mathematics plays a key role in designing these features. Persistent homology theory, which equips topological invariants with persistence, provides valuable insights into molecular structures. The calculation of Betti numbers is based on differential that typically satisfy \(d^2 = 0\). Our recent work has extended this concept by employing Mayer homology with a generalized differential that satisfies \(d^N = 0\) for \(N \geq 2\), leading to the development of persistent Mayer homology (PMH) theory and richer topological information across various scales. In this study, we utilize PMH to create a novel multiscale topological vectorization for molecular representation, offering valuable tools for descriptive and predictive analysis in molecular data and machine learning prediction. Specifically, benchmark tests on established protein-ligand datasets, including PDBbind-2007, PDBbind-2013, and PDBbind-2016, demonstrate the superior performance of our Mayer homology models in predicting protein-ligand binding affinities.
通过梅耶-同源学习预测蛋白质与配体的结合亲和力
人工智能辅助药物设计正在彻底改变制药行业。有效的分子特征对于准确的机器学习预测至关重要,而高等数学在设计这些特征方面发挥着关键作用。持久同构理论使拓扑变量具有持久性,为分子结构提供了宝贵的见解。贝蒂数的计算基于通常满足 \(d^2 = 0\) 的微分。我们最近的工作扩展了这一概念,采用了具有广义微分的梅耶同源论,该微分满足(N \geq 2\ )的 \(d^N =0\) ,从而发展了持久性梅耶同源论(PMH)理论,并在各种尺度上提供了更丰富的拓扑信息。在这项研究中,我们利用 PMH 创建了一种新颖的多尺度拓扑矢量化分子表征,为分子数据和机器学习预测中的描述性分析和预测性分析提供了有价值的工具。具体而言,在已建立的蛋白质配体数据集(包括 PDBbind-2007、PDBbind-2013 和 PDBbind-2016)上进行的基准测试表明,我们的梅耶同源模型在预测蛋白质配体结合率方面具有卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信