Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides

Ziyang Yu, Wenbing Huang, Yang Liu
{"title":"Force-Guided Bridge Matching for Full-Atom Time-Coarsened Dynamics of Peptides","authors":"Ziyang Yu, Wenbing Huang, Yang Liu","doi":"arxiv-2408.15126","DOIUrl":null,"url":null,"abstract":"Molecular Dynamics (MD) simulations are irreplaceable and ubiquitous in\nfields of materials science, chemistry, pharmacology just to name a few.\nConventional MD simulations are plagued by numerical stability as well as long\nequilibration time issues, which limits broader applications of MD simulations.\nRecently, a surge of deep learning approaches have been devised for\ntime-coarsened dynamics, which learns the state transition mechanism over much\nlarger time scales to overcome these limitations. However, only a few methods\ntarget the underlying Boltzmann distribution by resampling techniques, where\nproposals are rarely accepted as new states with low efficiency. In this work,\nwe propose a force-guided bridge matching model, FBM, a novel framework that\nfirst incorporates physical priors into bridge matching for full-atom\ntime-coarsened dynamics. With the guidance of our well-designed intermediate\nforce field, FBM is feasible to target the Boltzmann-like distribution by\ndirect inference without extra steps. Experiments on small peptides verify our\nsuperiority in terms of comprehensive metrics and demonstrate transferability\nto unseen peptide systems.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular Dynamics (MD) simulations are irreplaceable and ubiquitous in fields of materials science, chemistry, pharmacology just to name a few. Conventional MD simulations are plagued by numerical stability as well as long equilibration time issues, which limits broader applications of MD simulations. Recently, a surge of deep learning approaches have been devised for time-coarsened dynamics, which learns the state transition mechanism over much larger time scales to overcome these limitations. However, only a few methods target the underlying Boltzmann distribution by resampling techniques, where proposals are rarely accepted as new states with low efficiency. In this work, we propose a force-guided bridge matching model, FBM, a novel framework that first incorporates physical priors into bridge matching for full-atom time-coarsened dynamics. With the guidance of our well-designed intermediate force field, FBM is feasible to target the Boltzmann-like distribution by direct inference without extra steps. Experiments on small peptides verify our superiority in terms of comprehensive metrics and demonstrate transferability to unseen peptide systems.
力引导桥匹配,实现肽的全原子时间粗化动力学
分子动力学(MD)模拟在材料科学、化学、药理学等领域无可替代、无处不在。传统的 MD 模拟受到数值稳定性以及校准时间过长等问题的困扰,限制了 MD 模拟的广泛应用。然而,只有少数方法通过重采样技术瞄准了底层玻尔兹曼分布,在这种情况下,提出的新状态很少被接受,效率很低。在这项工作中,我们提出了一种力引导桥匹配模型(FBM),这是一种新颖的框架,它首先将物理先验纳入全原子时间粗化动力学的桥匹配中。在我们精心设计的中间力场的引导下,FBM 可以通过直接推理来确定类似波尔兹曼分布的目标,而无需额外步骤。在小肽上的实验验证了我们在综合指标方面的优势,并证明了我们的方法可以应用于未知的肽系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信