Quantitative Prediction of Protein-Polyelectrolyte Binding Thermodynamics: Adsorption of Heparin-Analog Polysulfates to the SARS-CoV-2 Spike Protein RBD

Lenard Neander, Cedric Hannemann, Roland R. Netz, Anil Kumar Sahoo
{"title":"Quantitative Prediction of Protein-Polyelectrolyte Binding Thermodynamics: Adsorption of Heparin-Analog Polysulfates to the SARS-CoV-2 Spike Protein RBD","authors":"Lenard Neander, Cedric Hannemann, Roland R. Netz, Anil Kumar Sahoo","doi":"arxiv-2409.00210","DOIUrl":null,"url":null,"abstract":"Interactions of polyelectrolytes (PEs) with proteins play a crucial role in\nnumerous biological processes, such as the internalization of virus particles\ninto host cells. Although docking, machine learning methods, and molecular\ndynamics (MD) simulations are utilized to estimate binding poses and binding\nfree energies of small-molecule drugs to proteins, quantitative prediction of\nthe binding thermodynamics of PE-based drugs presents a significant obstacle in\ncomputer-aided drug design. This is due to the sluggish dynamics of PEs caused\nby their size and strong charge-charge correlations. In this paper, we\nintroduce advanced sampling methods based on a force-spectroscopy setup and\ntheoretical modeling to overcome this barrier. We exemplify our method with\nexplicit solvent all-atom MD simulations of interactions of anionic PEs that\nshow antiviral properties, namely heparin and linear polyglycerol sulfate\n(LPGS), with the SARS-CoV-2 spike protein receptor binding domain (RBD). Our\nprediction for the binding free energy of LPGS to the wild-type RBD matches\nexperimentally measured dissociation constants within thermal energy, kT, and\ncorrectly reproduces the experimental PE-length dependence. We find that LPGS\nbinds to the Delta-variant RBD with an additional free-energy gain of 2.4 kT,\ncompared to the wild-type RBD, in accord with electrostatic arguments. We show\nthat the LPGS-RBD binding is solvent-dominated and enthalpy-driven, though with\na large entropy-enthalpy compensation. Our method is applicable to general\npolymer adsorption phenomena and predicts precise binding free energies and\nre-configurational friction as needed for drug and drug-delivery design.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Interactions of polyelectrolytes (PEs) with proteins play a crucial role in numerous biological processes, such as the internalization of virus particles into host cells. Although docking, machine learning methods, and molecular dynamics (MD) simulations are utilized to estimate binding poses and binding free energies of small-molecule drugs to proteins, quantitative prediction of the binding thermodynamics of PE-based drugs presents a significant obstacle in computer-aided drug design. This is due to the sluggish dynamics of PEs caused by their size and strong charge-charge correlations. In this paper, we introduce advanced sampling methods based on a force-spectroscopy setup and theoretical modeling to overcome this barrier. We exemplify our method with explicit solvent all-atom MD simulations of interactions of anionic PEs that show antiviral properties, namely heparin and linear polyglycerol sulfate (LPGS), with the SARS-CoV-2 spike protein receptor binding domain (RBD). Our prediction for the binding free energy of LPGS to the wild-type RBD matches experimentally measured dissociation constants within thermal energy, kT, and correctly reproduces the experimental PE-length dependence. We find that LPGS binds to the Delta-variant RBD with an additional free-energy gain of 2.4 kT, compared to the wild-type RBD, in accord with electrostatic arguments. We show that the LPGS-RBD binding is solvent-dominated and enthalpy-driven, though with a large entropy-enthalpy compensation. Our method is applicable to general polymer adsorption phenomena and predicts precise binding free energies and re-configurational friction as needed for drug and drug-delivery design.
蛋白质-多电解质结合热力学的定量预测:肝素类似物多硫酸盐对 SARS-CoV-2 Spike 蛋白 RBD 的吸附作用
聚电解质(PE)与蛋白质的相互作用在许多生物过程中发挥着至关重要的作用,例如病毒颗粒在宿主细胞内的内化。虽然对接、机器学习方法和分子动力学(MD)模拟可用于估算小分子药物与蛋白质的结合位置和结合自由能,但对基于聚电解质的药物的结合热力学进行定量预测是计算机辅助药物设计的一大障碍。这是由于聚乙烯的尺寸和强电荷电荷相关性导致其动态变化缓慢。本文介绍了基于力谱装置和理论建模的先进采样方法,以克服这一障碍。我们用显式溶剂全原子 MD 模拟了具有抗病毒特性的阴离子聚乙烯(即肝素和线性聚甘油硫酸酯(LPGS))与 SARS-CoV-2 穗状病毒蛋白受体结合域(RBD)的相互作用。我们对 LPGS 与野生型 RBD 的结合自由能的预测与热能 kT 范围内的实验测量解离常数相吻合,并正确再现了实验的 PE 长度依赖性。我们发现,与野生型 RBD 相比,LPGS 与 Delta 变体 RBD 结合会产生 2.4 kT 的额外自由能增益,这与静电论证是一致的。我们的研究表明,LPGS-RBD 的结合是溶剂主导型和焓驱动型的,但有很大的熵焓补偿。我们的方法适用于一般的聚合物吸附现象,并能预测药物和给药设计所需的精确结合自由能和再构型摩擦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信