Multiview Random Vector Functional Link Network for Predicting DNA-Binding Proteins

A. Quadir, M. Sajid, M. Tanveer
{"title":"Multiview Random Vector Functional Link Network for Predicting DNA-Binding Proteins","authors":"A. Quadir, M. Sajid, M. Tanveer","doi":"arxiv-2409.02588","DOIUrl":null,"url":null,"abstract":"The identification of DNA-binding proteins (DBPs) is a critical task due to\ntheir significant impact on various biological activities. Understanding the\nmechanisms underlying protein-DNA interactions is essential for elucidating\nvarious life activities. In recent years, machine learning-based models have\nbeen prominently utilized for DBP prediction. In this paper, to predict DBPs,\nwe propose a novel framework termed a multiview random vector functional link\n(MvRVFL) network, which fuses neural network architecture with multiview\nlearning. The proposed MvRVFL model combines the benefits of late and early\nfusion, allowing for distinct regularization parameters across different views\nwhile leveraging a closed-form solution to determine unknown parameters\nefficiently. The primal objective function incorporates a coupling term aimed\nat minimizing a composite of errors stemming from all views. From each of the\nthree protein views of the DBP datasets, we extract five features. These\nfeatures are then fused together by incorporating a hidden feature during the\nmodel training process. The performance of the proposed MvRVFL model on the DBP\ndataset surpasses that of baseline models, demonstrating its superior\neffectiveness. Furthermore, we extend our assessment to the UCI, KEEL, AwA, and\nCorel5k datasets, to establish the practicality of the proposed models. The\nconsistency error bound, the generalization error bound, and empirical\nfindings, coupled with rigorous statistical analyses, confirm the superior\ngeneralization capabilities of the MvRVFL model compared to the baseline\nmodels.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of DNA-binding proteins (DBPs) is a critical task due to their significant impact on various biological activities. Understanding the mechanisms underlying protein-DNA interactions is essential for elucidating various life activities. In recent years, machine learning-based models have been prominently utilized for DBP prediction. In this paper, to predict DBPs, we propose a novel framework termed a multiview random vector functional link (MvRVFL) network, which fuses neural network architecture with multiview learning. The proposed MvRVFL model combines the benefits of late and early fusion, allowing for distinct regularization parameters across different views while leveraging a closed-form solution to determine unknown parameters efficiently. The primal objective function incorporates a coupling term aimed at minimizing a composite of errors stemming from all views. From each of the three protein views of the DBP datasets, we extract five features. These features are then fused together by incorporating a hidden feature during the model training process. The performance of the proposed MvRVFL model on the DBP dataset surpasses that of baseline models, demonstrating its superior effectiveness. Furthermore, we extend our assessment to the UCI, KEEL, AwA, and Corel5k datasets, to establish the practicality of the proposed models. The consistency error bound, the generalization error bound, and empirical findings, coupled with rigorous statistical analyses, confirm the superior generalization capabilities of the MvRVFL model compared to the baseline models.
用于预测 DNA 结合蛋白的多视图随机向量功能链接网络
由于 DNA 结合蛋白(DBPs)对各种生物活动具有重大影响,因此对它们进行鉴定是一项至关重要的任务。了解蛋白质-DNA相互作用的内在机制对于阐明各种生命活动至关重要。近年来,基于机器学习的模型在 DBP 预测中得到了广泛应用。在本文中,为了预测DBPs,我们提出了一种新的框架,称为多视角随机向量功能链接(MvRVFL)网络,它融合了神经网络架构和多视角学习。所提出的 MvRVFL 模型结合了后期融合和早期融合的优点,允许在不同视图中使用不同的正则化参数,同时利用闭式求解来有效确定未知参数。主目标函数包含一个耦合项,旨在最小化来自所有视图的综合误差。我们从 DBP 数据集的三个蛋白质视图中的每个视图中提取了五个特征。然后在模型训练过程中加入一个隐藏特征,将这些特征融合在一起。所提出的 MvRVFL 模型在 DBP 数据集上的性能超过了基线模型,证明了它的超强功效。此外,我们还将评估扩展到 UCI、KEEL、AwA 和 Corel5k 数据集,以确定所提模型的实用性。一致性误差约束、泛化误差约束和经验发现,再加上严格的统计分析,证实了 MvRVFL 模型与基线模型相比具有更强的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信