M. Shoaib, I. Khan, Safdar Khan, S. Mukamil, Ahmad A. Ifseisi, Mohamed E. Assal, F. Qiao, I. Ullah, S. A. Khattak, G. Rooh, J. Kaewkhao
{"title":"Analysis of Eu3+-ions concentration effect on the spectral properties of zinc-barium-boron-tellurite glasses","authors":"M. Shoaib, I. Khan, Safdar Khan, S. Mukamil, Ahmad A. Ifseisi, Mohamed E. Assal, F. Qiao, I. Ullah, S. A. Khattak, G. Rooh, J. Kaewkhao","doi":"10.1007/s12648-024-03370-6","DOIUrl":null,"url":null,"abstract":"<p>The present study aims to examine the concentration effect of Eu<sup>3+</sup> ions in Boro Tellurite glass and how it affects its physicochemical and photo luminescent characteristics. Using the melt quenching method, a series of Boro-Telluride glasses with the composition (30-x) TeO<sub>2</sub>–30B<sub>2</sub>O<sub>3</sub>–10ZnO–30BaO–xEu<sub>2</sub>O<sub>3</sub> (where x = 0.00, 0.05, 0.10, 0.50, 1.00, 1.50, 2.00, and 2.50 mol%) were synthesized. The results of the XRD analysis revealed that the prepared samples are amorphous. As the concentration of the Eu<sub>2</sub>O<sub>3</sub> increases, the density and refractive index rise, but the molar volume decreases, indicating that the glass matrix has become more compact. Similarly, the absorption spectra and oscillator strength calculated with JO theory demonstrate the transition from 7F<sub>0</sub> to <sup>5</sup>L<sub>6</sub> (in the UV–Vis region) and <sup>7</sup>F<sub>0</sub> to <sup>5</sup>L<sub>6</sub> (in the NIR region) is more intense. For TBZB–Eu7 glass, the phonon sideband energy is estimated to be 717 cm<sup>−1</sup> and compared with the BGO scintillator, the integrated scintillation efficiency is estimated to be 16.14%. These findings demonstrate that the current glasses doped with 2 mol% Eu<sup>3+</sup> exhibit strong luminescence qualities and can be used for portal imaging systems (MeV energies) non-destructive analysis such as industrial and medical X-ray imaging systems, and also have potential for laser application.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"25 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03370-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aims to examine the concentration effect of Eu3+ ions in Boro Tellurite glass and how it affects its physicochemical and photo luminescent characteristics. Using the melt quenching method, a series of Boro-Telluride glasses with the composition (30-x) TeO2–30B2O3–10ZnO–30BaO–xEu2O3 (where x = 0.00, 0.05, 0.10, 0.50, 1.00, 1.50, 2.00, and 2.50 mol%) were synthesized. The results of the XRD analysis revealed that the prepared samples are amorphous. As the concentration of the Eu2O3 increases, the density and refractive index rise, but the molar volume decreases, indicating that the glass matrix has become more compact. Similarly, the absorption spectra and oscillator strength calculated with JO theory demonstrate the transition from 7F0 to 5L6 (in the UV–Vis region) and 7F0 to 5L6 (in the NIR region) is more intense. For TBZB–Eu7 glass, the phonon sideband energy is estimated to be 717 cm−1 and compared with the BGO scintillator, the integrated scintillation efficiency is estimated to be 16.14%. These findings demonstrate that the current glasses doped with 2 mol% Eu3+ exhibit strong luminescence qualities and can be used for portal imaging systems (MeV energies) non-destructive analysis such as industrial and medical X-ray imaging systems, and also have potential for laser application.
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.