Diksha Solanki, Poonam Devi, Hina Dalal, Neeraj Sehrawat, Mukesh Kumar, Ojas Garg, Rajesh Kumar Malik
{"title":"Intense red emission from trivalent Eu3+ doped Ca9La(VO4)7 nanophosphor for lighting and latent fingerprinting applications","authors":"Diksha Solanki, Poonam Devi, Hina Dalal, Neeraj Sehrawat, Mukesh Kumar, Ojas Garg, Rajesh Kumar Malik","doi":"10.1007/s12648-024-03389-9","DOIUrl":null,"url":null,"abstract":"<p>A quick, efficient, and environment-friendly solution combustion approach was used to develop intense red light emitting Eu<sup>3+</sup> activated Ca<sub>9</sub>La(VO<sub>4</sub>)<sub>7</sub> nanophosphor. Rietveld’s refinement of patterns obtained from XRD validated the trigonal structure & (R3c 161 space group) of the crystallized nanophosphors. Elemental analysis and surface morphology of the red phosphors were investigated by EDAX and SEM techniques. Tauc’s theory was used to determine the band gap of the host & optimized nanosample. The excitation spectra at 331 nm indicate energy transfer between VO<sub>4</sub><sup>3−</sup> → Eu<sup>3+</sup> ions, which is confirmed by photoluminescence lifetime measurements. The designated nanophosphors emit bright red light due to the <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub> radiative transition. Dexter’s hypothesis and I–H model were used to demonstrate that dipole–dipole interactions are a true phenomenon for concentration quenching. Furthermore, the optical properties of Ca<sub>9</sub>La<sub>0.6</sub>Eu<sub>0.4</sub>(VO<sub>4</sub>)<sub>7</sub> nanophosphor exhibit quantum efficacy (58.67%), CIE co-ordinates (0.5192, 0.3313), and color-temperature (1717 K), making it suitable for use in wLEDs, photonic devices and based on the previously mentioned results, the optimum (i.e. Ca<sub>9</sub>La<sub>(1-x)</sub>Eu<sub>x</sub>(VO<sub>4</sub>)<sub>7</sub> (x = 0.4 mol%)) nanophosphor was shown to be useful for LFP (latent fingerprinting).</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03389-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A quick, efficient, and environment-friendly solution combustion approach was used to develop intense red light emitting Eu3+ activated Ca9La(VO4)7 nanophosphor. Rietveld’s refinement of patterns obtained from XRD validated the trigonal structure & (R3c 161 space group) of the crystallized nanophosphors. Elemental analysis and surface morphology of the red phosphors were investigated by EDAX and SEM techniques. Tauc’s theory was used to determine the band gap of the host & optimized nanosample. The excitation spectra at 331 nm indicate energy transfer between VO43− → Eu3+ ions, which is confirmed by photoluminescence lifetime measurements. The designated nanophosphors emit bright red light due to the 5D0 → 7F2 radiative transition. Dexter’s hypothesis and I–H model were used to demonstrate that dipole–dipole interactions are a true phenomenon for concentration quenching. Furthermore, the optical properties of Ca9La0.6Eu0.4(VO4)7 nanophosphor exhibit quantum efficacy (58.67%), CIE co-ordinates (0.5192, 0.3313), and color-temperature (1717 K), making it suitable for use in wLEDs, photonic devices and based on the previously mentioned results, the optimum (i.e. Ca9La(1-x)Eux(VO4)7 (x = 0.4 mol%)) nanophosphor was shown to be useful for LFP (latent fingerprinting).
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.