Makrand E. Sonawane, Ketan P. Gattu, Vishnu V. Kutwade, Dipak A. Tonpe, Faizan M. Khan, Sumaiyya Shaikh, Prakash S. Gajbar, Ramphal B. Sharma
{"title":"Ni doping in CZTS solar cells: a path to enhanced photovoltaic performance","authors":"Makrand E. Sonawane, Ketan P. Gattu, Vishnu V. Kutwade, Dipak A. Tonpe, Faizan M. Khan, Sumaiyya Shaikh, Prakash S. Gajbar, Ramphal B. Sharma","doi":"10.1007/s12648-024-03327-9","DOIUrl":null,"url":null,"abstract":"<p>The present communication explores the optical, structural, compositional, and electrical properties of Copper Zinc Tin Sulfide (CZTS) and Nickel (Ni)-CZTS solar cells. A microwave-based synthesis method has been employed to synthesize CZTS and Ni-doped CZTS powders. X-ray diffraction and Raman scattering spectroscopy have confirmed the monophase kesterite crystal structure of CZTS and Ni-CZTS. Optical absorption spectroscopy of films in the UV–Visible range displays a strong absorption coefficient of more than <span>\\(10^{4} {\\text{cm}}^{ - 1}\\)</span>. In response to Ni doping, the optical band gap energy of CZTS decreased to 1.41 eV from 1.5 eV. In both samples, positive Hall coefficients were detected, confirming the presence of p-type conductivity. This study aims to determine the effects of Ni-CZTS incorporation on the performance of FTO/CZTS/CdS/ZnO/Ag solar cells. The introduction of Ni-CZTS between CZTS and CdS resulted in optimum alignment and higher efficiency. 5% Ni doping concentration is found to be the optimum doping concentration, resulting in <span>\\(J_{sc} = 32.5\\;{\\text{mA}}/{\\text{cm}}^{2}\\)</span>, <span>\\(V_{{{\\text{oc}}}} = 0.541\\;{\\text{V}}\\)</span>, <span>\\({\\text{FF}} = 31\\%\\)</span> and the efficiency is 5.4%.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03327-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present communication explores the optical, structural, compositional, and electrical properties of Copper Zinc Tin Sulfide (CZTS) and Nickel (Ni)-CZTS solar cells. A microwave-based synthesis method has been employed to synthesize CZTS and Ni-doped CZTS powders. X-ray diffraction and Raman scattering spectroscopy have confirmed the monophase kesterite crystal structure of CZTS and Ni-CZTS. Optical absorption spectroscopy of films in the UV–Visible range displays a strong absorption coefficient of more than \(10^{4} {\text{cm}}^{ - 1}\). In response to Ni doping, the optical band gap energy of CZTS decreased to 1.41 eV from 1.5 eV. In both samples, positive Hall coefficients were detected, confirming the presence of p-type conductivity. This study aims to determine the effects of Ni-CZTS incorporation on the performance of FTO/CZTS/CdS/ZnO/Ag solar cells. The introduction of Ni-CZTS between CZTS and CdS resulted in optimum alignment and higher efficiency. 5% Ni doping concentration is found to be the optimum doping concentration, resulting in \(J_{sc} = 32.5\;{\text{mA}}/{\text{cm}}^{2}\), \(V_{{{\text{oc}}}} = 0.541\;{\text{V}}\), \({\text{FF}} = 31\%\) and the efficiency is 5.4%.
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.