A novel analysis of the fractional Cauchy reaction-diffusion equations

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Deepak Umarao Sarwe, A. Stephan Antony Raj, Pushpendra Kumar, Soheil Salahshour
{"title":"A novel analysis of the fractional Cauchy reaction-diffusion equations","authors":"Deepak Umarao Sarwe, A. Stephan Antony Raj, Pushpendra Kumar, Soheil Salahshour","doi":"10.1007/s12648-024-03411-0","DOIUrl":null,"url":null,"abstract":"<p>This article considers the Cauchy reaction-diffusion equations and derives the numerical solutions using the fractional natural decomposition method (FNDM). The projected solution approach works without conversion or perturbation. The examples confirm the method’s accuracy and reliability, allowing for fractional order studies in real-world problems. Plots and tables validate the accuracy of the proposed scheme. This research reveals the influences of temporal history in the fractional Cauchy reaction-diffusion equations, which is the novelty of this work.\n</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"35 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03411-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article considers the Cauchy reaction-diffusion equations and derives the numerical solutions using the fractional natural decomposition method (FNDM). The projected solution approach works without conversion or perturbation. The examples confirm the method’s accuracy and reliability, allowing for fractional order studies in real-world problems. Plots and tables validate the accuracy of the proposed scheme. This research reveals the influences of temporal history in the fractional Cauchy reaction-diffusion equations, which is the novelty of this work.

Abstract Image

分式考奇反应扩散方程的新分析
本文研究了 Cauchy 反应-扩散方程,并利用分数自然分解法(FNDM)推导出数值解。投影求解法无需转换或扰动。实例证实了该方法的准确性和可靠性,可用于实际问题中的分数阶研究。曲线图和表格验证了所提方案的准确性。这项研究揭示了分数 Cauchy 反应扩散方程中时间历史的影响,这也是这项工作的新颖之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信