{"title":"Sharma-mittal HDE model in anisotropic universe","authors":"T. Vinutha, K. Niharika, K. Venkata Vasavi","doi":"10.1007/s12648-024-03374-2","DOIUrl":null,"url":null,"abstract":"<p>The current study explores the Sharma-Mittal holographic dark energy (SMHDE) by considering Bianchi-<span>\\(VI_0\\)</span> space-time in Saez-Ballester’s theory. The model’s exact solutions are procured by assuming the relationship between metric potentials. The Hubble horizon is regarded as the Infrared cutoff to examine our model’s cosmic effects. The physical behavior of the model is investigated by considering two fluids- SMHDE and pressureless matter. The behavior of the cosmological parameters, such as the deceleration parameter, EoS parameter, <span>\\(\\rho _{de}\\)</span>, <span>\\(\\rho _m\\)</span>, statefinder, and <span>\\(v_s^2\\)</span>, was evaluated with the help of their plots with respect to redshift(<i>z</i>) to study the nature of the universe. The figure of the deceleration parameter predicts that the present model transits from the deceleration to the acceleration period of the universe. The EoS parameter for this model agrees with the recent astrophysical observations, which lie within the range of quintessence region. In the case of statefinder and <span>\\(v_s^2\\)</span>, the model shows Chaplygin gas and stability throughout the region. The perturbation technique is used to evaluate the stability of the resulting model. Finally, the results of the current model support the existence of an accelerating universe with the present observational data.</p>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s12648-024-03374-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The current study explores the Sharma-Mittal holographic dark energy (SMHDE) by considering Bianchi-\(VI_0\) space-time in Saez-Ballester’s theory. The model’s exact solutions are procured by assuming the relationship between metric potentials. The Hubble horizon is regarded as the Infrared cutoff to examine our model’s cosmic effects. The physical behavior of the model is investigated by considering two fluids- SMHDE and pressureless matter. The behavior of the cosmological parameters, such as the deceleration parameter, EoS parameter, \(\rho _{de}\), \(\rho _m\), statefinder, and \(v_s^2\), was evaluated with the help of their plots with respect to redshift(z) to study the nature of the universe. The figure of the deceleration parameter predicts that the present model transits from the deceleration to the acceleration period of the universe. The EoS parameter for this model agrees with the recent astrophysical observations, which lie within the range of quintessence region. In the case of statefinder and \(v_s^2\), the model shows Chaplygin gas and stability throughout the region. The perturbation technique is used to evaluate the stability of the resulting model. Finally, the results of the current model support the existence of an accelerating universe with the present observational data.
期刊介绍:
Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.