Vianey A. Candelas-Urrea, Carlos Villa-Angulo, Iván O. Hernández-Fuentes, Ricardo Morales-Carbajal, Rafael Villa-Angulo
{"title":"All-Layer Electrodeposition of a CdTe/Hg0.1Cd0.9Te/CdTe Photodetector for Short- and Mid-Wavelength Infrared Detection","authors":"Vianey A. Candelas-Urrea, Carlos Villa-Angulo, Iván O. Hernández-Fuentes, Ricardo Morales-Carbajal, Rafael Villa-Angulo","doi":"10.3390/coatings14091133","DOIUrl":null,"url":null,"abstract":"CdS, CdTe, Hg0.1Cd0.9Te, CdTe, and Ag films were progressively electrodeposited on ITO-coated soda–lime glass to manufacture a short- and mid-wavelength infrared photodetector. A distinctive feature of the applied electrodeposition method is the use of a non-aqueous solution containing ethylene glycol (EG) as the electrolyte in a traditional three-electrode configuration for every film deposition. Using EG as a supplementary electrolyte and using the same deposition conditions with a potential below 0.75 V for all film coatings reduces their environmental incompatibility and offers a low-cost and low-energy route for fabricating the reported photodetector. The produced photodetector has a sensitivity of up to ≈957 nm with a detectivity (D*) of 2.86 × 1012 cm Hz1/2 W−1 and a dark current density (Jdark) of 10−6 mA cm−2. Furthermore, the manufactured photodiode exhibits self-powered performance because Voc and Jsc are self-generated, unlike previously reported photodiodes. The presented all-layer electrodeposition assembly approach can easily be adapted to fabricate sensing devices for different applications.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091133","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
CdS, CdTe, Hg0.1Cd0.9Te, CdTe, and Ag films were progressively electrodeposited on ITO-coated soda–lime glass to manufacture a short- and mid-wavelength infrared photodetector. A distinctive feature of the applied electrodeposition method is the use of a non-aqueous solution containing ethylene glycol (EG) as the electrolyte in a traditional three-electrode configuration for every film deposition. Using EG as a supplementary electrolyte and using the same deposition conditions with a potential below 0.75 V for all film coatings reduces their environmental incompatibility and offers a low-cost and low-energy route for fabricating the reported photodetector. The produced photodetector has a sensitivity of up to ≈957 nm with a detectivity (D*) of 2.86 × 1012 cm Hz1/2 W−1 and a dark current density (Jdark) of 10−6 mA cm−2. Furthermore, the manufactured photodiode exhibits self-powered performance because Voc and Jsc are self-generated, unlike previously reported photodiodes. The presented all-layer electrodeposition assembly approach can easily be adapted to fabricate sensing devices for different applications.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material