Impact of Calcium Chloride Addition on the Microstructural and Physicochemical Properties of Pea Protein Isolate-Based Films Plasticized with Glycerol and Sorbitol
IF 2.9 3区 材料科学Q2 MATERIALS SCIENCE, COATINGS & FILMS
{"title":"Impact of Calcium Chloride Addition on the Microstructural and Physicochemical Properties of Pea Protein Isolate-Based Films Plasticized with Glycerol and Sorbitol","authors":"Dariusz Kowalczyk, Waldemar Kazimierczak","doi":"10.3390/coatings14091116","DOIUrl":null,"url":null,"abstract":"Ca2+ can boost protein-protein interactions and, if present at an appropriate level, can potentially improve some physicochemical properties of protein-based gels and films. This study aimed to determine the effects of CaCl2 (0%–0.05% w/w) on the microstructural, optical, water affinity, and mechanical characteristics of glycerol (Gly)- and sorbitol (Sor)-plasticized pea protein isolate (PPI)-based films. CaCl2 caused darkening and a color shift of the films from yellow to yellow-green. Additionally, decreased light transmission, particularly in the UV range, acidification, and reduced moisture content were observed. CaCl2 decreased the water vapor permeability of the Gly plasticized film by an average of 20% with no effect on the Sor-plasticized film. All films were completely soluble in water. CaCl2 negatively impacted the mechanical integrity of the films, reducing the tensile strength of the Gly- and Sor-plasticized films by ~16% and 14%–37%, respectively. Further increases in CaCl2 content (0.1% and 0.2% w/w) led to concentration-dependent microvoids resulting from protein over-crosslinking and/or coagulation. In summary, the incorporation of CaCl2 into PPI-based films did not provide significant benefits and actually worsened key properties, such as transparency and mechanical strength. The type of plasticizer influenced how CaCl2 affected some properties of the PPI-based film.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091116","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Ca2+ can boost protein-protein interactions and, if present at an appropriate level, can potentially improve some physicochemical properties of protein-based gels and films. This study aimed to determine the effects of CaCl2 (0%–0.05% w/w) on the microstructural, optical, water affinity, and mechanical characteristics of glycerol (Gly)- and sorbitol (Sor)-plasticized pea protein isolate (PPI)-based films. CaCl2 caused darkening and a color shift of the films from yellow to yellow-green. Additionally, decreased light transmission, particularly in the UV range, acidification, and reduced moisture content were observed. CaCl2 decreased the water vapor permeability of the Gly plasticized film by an average of 20% with no effect on the Sor-plasticized film. All films were completely soluble in water. CaCl2 negatively impacted the mechanical integrity of the films, reducing the tensile strength of the Gly- and Sor-plasticized films by ~16% and 14%–37%, respectively. Further increases in CaCl2 content (0.1% and 0.2% w/w) led to concentration-dependent microvoids resulting from protein over-crosslinking and/or coagulation. In summary, the incorporation of CaCl2 into PPI-based films did not provide significant benefits and actually worsened key properties, such as transparency and mechanical strength. The type of plasticizer influenced how CaCl2 affected some properties of the PPI-based film.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material