Optimization of Lost Foam Coating Performance: Effects of Blade Shape, Stirring Speed, and Drying Temperature on Viscosity, Coating Weight, and Surface Morphology

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Coatings Pub Date : 2024-09-02 DOI:10.3390/coatings14091106
Guojin Sun, Zhenggui Li, Qi Wang
{"title":"Optimization of Lost Foam Coating Performance: Effects of Blade Shape, Stirring Speed, and Drying Temperature on Viscosity, Coating Weight, and Surface Morphology","authors":"Guojin Sun, Zhenggui Li, Qi Wang","doi":"10.3390/coatings14091106","DOIUrl":null,"url":null,"abstract":"The current investigation focuses on the viscosity, coating weight, and surface characteristics of lost foam casting coatings, examining the effects of blade shape, stirring speed, and stirring time. A systematic analysis was conducted to determine how different stirring speeds and durations influenced coating weight and viscosity. The results indicate that the blade shape has a considerable impact on the uniformity and efficacy of the coating, with some designs being far more effective in reaching the optimal viscosity and coating weight through uniformly distributed mixing. Results were consistently obtained when stirring at 800–1200 rpm. It was demonstrated that while stirring speed significantly impacts coating deposition, it has small effect on viscosity. A stirring time of 30 min was found optimal for stabilizing coating weight and viscosity without significant variations. Drying at room temperature produced smoother surfaces with fewer cracks, whereas higher drying temperatures (50 °C) were associated with increased surface roughness and cracking. Crack analysis after drying revealed that coatings mixed with the tri-blade had the lowest tendency to crack, demonstrating its superior capability for even and thorough mixing.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"103 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091106","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

The current investigation focuses on the viscosity, coating weight, and surface characteristics of lost foam casting coatings, examining the effects of blade shape, stirring speed, and stirring time. A systematic analysis was conducted to determine how different stirring speeds and durations influenced coating weight and viscosity. The results indicate that the blade shape has a considerable impact on the uniformity and efficacy of the coating, with some designs being far more effective in reaching the optimal viscosity and coating weight through uniformly distributed mixing. Results were consistently obtained when stirring at 800–1200 rpm. It was demonstrated that while stirring speed significantly impacts coating deposition, it has small effect on viscosity. A stirring time of 30 min was found optimal for stabilizing coating weight and viscosity without significant variations. Drying at room temperature produced smoother surfaces with fewer cracks, whereas higher drying temperatures (50 °C) were associated with increased surface roughness and cracking. Crack analysis after drying revealed that coatings mixed with the tri-blade had the lowest tendency to crack, demonstrating its superior capability for even and thorough mixing.
优化发泡涂层性能:叶片形状、搅拌速度和干燥温度对粘度、涂层重量和表面形态的影响
目前的研究重点是消失模铸造涂层的粘度、涂层重量和表面特性,并考察了叶片形状、搅拌速度和搅拌时间的影响。通过系统分析,确定了不同搅拌速度和搅拌时间对涂层重量和粘度的影响。结果表明,桨叶形状对涂层的均匀性和效果有很大影响,有些设计通过均匀分布的搅拌能更有效地达到最佳粘度和涂层重量。在 800-1200 转/分钟的搅拌速度下,结果始终如一。实验证明,虽然搅拌速度对涂层沉积有很大影响,但对粘度的影响很小。30 分钟的搅拌时间是稳定涂层重量和粘度的最佳时间,不会产生明显变化。室温下干燥的涂层表面更光滑,裂纹更少,而干燥温度越高(50 °C),表面粗糙度越大,裂纹也越多。干燥后的裂纹分析表明,使用三叶片混合的涂料开裂倾向最低,这表明三叶片具有均匀、彻底混合的卓越能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信