Influence of the Dispersion of Carbon Nanotubes on the Electrical Conductivity, Adhesion Strength, and Corrosion Resistance of Waterborne Polyurethane Composites

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Coatings Pub Date : 2024-09-02 DOI:10.3390/coatings14091108
Fangfang Wang, Xiangrong Liu, Bin Cao, Xiaobao Wang, Kangjun Dong
{"title":"Influence of the Dispersion of Carbon Nanotubes on the Electrical Conductivity, Adhesion Strength, and Corrosion Resistance of Waterborne Polyurethane Composites","authors":"Fangfang Wang, Xiangrong Liu, Bin Cao, Xiaobao Wang, Kangjun Dong","doi":"10.3390/coatings14091108","DOIUrl":null,"url":null,"abstract":"Due to the presence of many flammable substances in the working environments of the petrochemical industry, anticorrosive conductive coatings need to be used on metal equipment to avoid safety accidents like fires. However, existing conductive solvent-based coatings are volatile when exposed to flammable and toxic organic solvents. Thus, in this work, a series of eco-friendly anticorrosive waterborne polyurethane (WPU) composites with multi-walled carbon nanotubes (MWCNTs) were prepared via a low-cost and practical process; the dispersion of MWCNTs was revealed when present in different amounts, and the mechanism behind the conduction of WPU composites was determined. We concluded that low amounts of MWCNTs were well dispersed, generating a conductive network, and the WPU composite was not entirely covered by the MWCNT particles, so the electrical conductivity in certain parts of the coating was good. When the content of MWCNTs was excessive, some stretched MWCNTs dispersed to the top of the composite and many MWCNTs agglomerated at the bottom. Additionally, when the content of MWCNTs was increased, the electrical conductivity, corrosion resistance, and adhesion strength of the WPU composite decreased. Our results could provide a theoretical foundation for the preparation of anticorrosive conductive waterborne composites for protecting equipment in the petrochemical industry.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"280 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091108","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the presence of many flammable substances in the working environments of the petrochemical industry, anticorrosive conductive coatings need to be used on metal equipment to avoid safety accidents like fires. However, existing conductive solvent-based coatings are volatile when exposed to flammable and toxic organic solvents. Thus, in this work, a series of eco-friendly anticorrosive waterborne polyurethane (WPU) composites with multi-walled carbon nanotubes (MWCNTs) were prepared via a low-cost and practical process; the dispersion of MWCNTs was revealed when present in different amounts, and the mechanism behind the conduction of WPU composites was determined. We concluded that low amounts of MWCNTs were well dispersed, generating a conductive network, and the WPU composite was not entirely covered by the MWCNT particles, so the electrical conductivity in certain parts of the coating was good. When the content of MWCNTs was excessive, some stretched MWCNTs dispersed to the top of the composite and many MWCNTs agglomerated at the bottom. Additionally, when the content of MWCNTs was increased, the electrical conductivity, corrosion resistance, and adhesion strength of the WPU composite decreased. Our results could provide a theoretical foundation for the preparation of anticorrosive conductive waterborne composites for protecting equipment in the petrochemical industry.
碳纳米管的分散对水性聚氨酯复合材料导电性、粘合强度和耐腐蚀性的影响
由于石化工业的工作环境中存在许多易燃物质,因此需要在金属设备上使用防腐导电涂料,以避免火灾等安全事故的发生。然而,现有的溶剂型导电涂料在接触易燃和有毒有机溶剂时会发生挥发。因此,在这项工作中,我们采用低成本、实用的工艺制备了一系列含有多壁碳纳米管(MWCNTs)的环保型防腐水性聚氨酯(WPU)复合材料;揭示了不同含量的多壁碳纳米管的分散情况,并确定了 WPU 复合材料的传导机理。我们得出的结论是,低含量的 MWCNT 具有良好的分散性,可生成导电网络,而且 WPU 复合材料并未完全被 MWCNT 颗粒覆盖,因此涂层某些部分的导电性能良好。当 MWCNT 的含量过多时,一些拉伸的 MWCNT 会分散到复合材料的顶部,而许多 MWCNT 则聚集在底部。此外,当 MWCNT 的含量增加时,WPU 复合材料的导电性、耐腐蚀性和粘合强度都有所下降。我们的研究结果可为制备用于保护石化工业设备的防腐导电水性复合材料提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信