Ester Villanueva, Iban Vicario, Carlos Vaquero, Joseba Albizuri, Maria Teresa Guraya, Nerea Burgos, Iñaki Hurtado
{"title":"Study of a New Novel HVOAF Coating Based on a New Multicomponent Al80Mg10Si5Cu5 Alloy","authors":"Ester Villanueva, Iban Vicario, Carlos Vaquero, Joseba Albizuri, Maria Teresa Guraya, Nerea Burgos, Iñaki Hurtado","doi":"10.3390/coatings14091135","DOIUrl":null,"url":null,"abstract":"This paper presents and demonstrates the development of a new lightweight coating for aluminum alloy from a novel multicomponent alloy based on the AlSiMgCu system. The coating was applied using a newly designed approach that combined high velocity oxy-fuel (HVOF) and plasma spraying processes. This hybrid technique enables the deposition of coatings with enhanced performance characteristics. The optical microscopy (OM) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM + EDS) revealed a strong adhesion and compaction between the multicomponent coating and the A6061 substrate. The new coating improved hardness by 50% and increased electrical conductivity by approximately 3.3 times compared to the as-cast alloy. Corrosion tests showed a lower corrosion rate, comparable to thermally treated A6061 alloy. Tribological tests indicated over 20% reduction in friction and over 50% reduction in wear rate. This suggests that multicomponent aluminum coatings could improve automotive and parts in contact with hydrogen by enhancing hydrogen fragilization resistance, corrosion resistance, electrical conductivity, and wear properties, with further optimization of thermal spraying potentially boosting performance even further.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091135","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents and demonstrates the development of a new lightweight coating for aluminum alloy from a novel multicomponent alloy based on the AlSiMgCu system. The coating was applied using a newly designed approach that combined high velocity oxy-fuel (HVOF) and plasma spraying processes. This hybrid technique enables the deposition of coatings with enhanced performance characteristics. The optical microscopy (OM) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM + EDS) revealed a strong adhesion and compaction between the multicomponent coating and the A6061 substrate. The new coating improved hardness by 50% and increased electrical conductivity by approximately 3.3 times compared to the as-cast alloy. Corrosion tests showed a lower corrosion rate, comparable to thermally treated A6061 alloy. Tribological tests indicated over 20% reduction in friction and over 50% reduction in wear rate. This suggests that multicomponent aluminum coatings could improve automotive and parts in contact with hydrogen by enhancing hydrogen fragilization resistance, corrosion resistance, electrical conductivity, and wear properties, with further optimization of thermal spraying potentially boosting performance even further.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material