Chenwei Jin, Ruibin Bai, Yuyang Zhou, Xinan Chen, Leshan Tan
{"title":"Enhancing online yard crane scheduling through a two-stage rollout memetic genetic programming","authors":"Chenwei Jin, Ruibin Bai, Yuyang Zhou, Xinan Chen, Leshan Tan","doi":"10.1007/s12293-024-00424-4","DOIUrl":null,"url":null,"abstract":"<p>Over the past decade, the surge in global container port throughput has heightened the demand for terminal efficiency, with the container yard operations being central to the overall port performance. However, the unpredictable arrival of external trucks poses significant challenges for yard cranes which must simultaneously schedule operations for both internal and external tasks. Traditional yard crane scheduling methods often rely on outdated assumptions that fail to account for the dynamic impact of external tasks. In response, container terminals increasingly model the yard crane scheduling as an online problem. A notable advancement in online scheduling is the online rollout method, which evaluates the decisions based on the potential outcomes of their future rollout schedules rather than immediate priorities. Although this method outperforms the previous approach, it faces two main issues: the rollout simulation is time consuming, and decisions based solely on objective value of rollout schedules may not align with long-term scheduling objectives. To overcome these limitations, we have developed a two-stage adaptive rollout decision model. In the first stage, less desirable tasks are dynamically filtered out to reduce the number of rollout simulations required, while the second stage employs a genetic programming evolved evaluation function to infuse more refined forward-looking insights into the scheduling process. This approach has proven to significantly enhance yard scheduling efficiency and performance, as confirmed by experimental validation. Given the dynamic nature of yard crane operations, we believe this method could be beneficially applied to other dynamic scheduling contexts.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00424-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, the surge in global container port throughput has heightened the demand for terminal efficiency, with the container yard operations being central to the overall port performance. However, the unpredictable arrival of external trucks poses significant challenges for yard cranes which must simultaneously schedule operations for both internal and external tasks. Traditional yard crane scheduling methods often rely on outdated assumptions that fail to account for the dynamic impact of external tasks. In response, container terminals increasingly model the yard crane scheduling as an online problem. A notable advancement in online scheduling is the online rollout method, which evaluates the decisions based on the potential outcomes of their future rollout schedules rather than immediate priorities. Although this method outperforms the previous approach, it faces two main issues: the rollout simulation is time consuming, and decisions based solely on objective value of rollout schedules may not align with long-term scheduling objectives. To overcome these limitations, we have developed a two-stage adaptive rollout decision model. In the first stage, less desirable tasks are dynamically filtered out to reduce the number of rollout simulations required, while the second stage employs a genetic programming evolved evaluation function to infuse more refined forward-looking insights into the scheduling process. This approach has proven to significantly enhance yard scheduling efficiency and performance, as confirmed by experimental validation. Given the dynamic nature of yard crane operations, we believe this method could be beneficially applied to other dynamic scheduling contexts.
Memetic ComputingCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍:
Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.
The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:
Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.
Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.
Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.