ResGAT: Residual Graph Attention Networks for molecular property prediction

IF 3.3 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Thanh-Hoang Nguyen-Vo, Trang T. T. Do, Binh P. Nguyen
{"title":"ResGAT: Residual Graph Attention Networks for molecular property prediction","authors":"Thanh-Hoang Nguyen-Vo, Trang T. T. Do, Binh P. Nguyen","doi":"10.1007/s12293-024-00423-5","DOIUrl":null,"url":null,"abstract":"<p>Molecular property prediction is an important step in the drug discovery pipeline. Numerous computational methods have been developed to predict a wide range of molecular properties. While recent approaches have shown promising results, no single architecture can comprehensively address all tasks, making this area persistently challenging and requiring substantial time and effort. Beyond traditional machine learning and deep learning architectures for regular data, several deep learning architectures have been designed for graph-structured data to overcome the limitations of conventional methods. Utilizing graph-structured data in quantitative structure–activity relationship (QSAR) modeling allows models to effectively extract unique features, especially where connectivity information is crucial. In our study, we developed residual graph attention networks (ResGAT), a deep learning architecture for molecular graph-structured data. This architecture is a combination of graph attention networks and shortcut connections to address both regression and classification problems. It is also customizable to adapt to various dataset sizes, enhancing the learning process based on molecular patterns. When tested multiple times with both random and scaffold sampling strategies on nine benchmark molecular datasets, QSAR models developed using ResGAT demonstrated stability and competitive performance compared to state-of-the-art methods.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00423-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular property prediction is an important step in the drug discovery pipeline. Numerous computational methods have been developed to predict a wide range of molecular properties. While recent approaches have shown promising results, no single architecture can comprehensively address all tasks, making this area persistently challenging and requiring substantial time and effort. Beyond traditional machine learning and deep learning architectures for regular data, several deep learning architectures have been designed for graph-structured data to overcome the limitations of conventional methods. Utilizing graph-structured data in quantitative structure–activity relationship (QSAR) modeling allows models to effectively extract unique features, especially where connectivity information is crucial. In our study, we developed residual graph attention networks (ResGAT), a deep learning architecture for molecular graph-structured data. This architecture is a combination of graph attention networks and shortcut connections to address both regression and classification problems. It is also customizable to adapt to various dataset sizes, enhancing the learning process based on molecular patterns. When tested multiple times with both random and scaffold sampling strategies on nine benchmark molecular datasets, QSAR models developed using ResGAT demonstrated stability and competitive performance compared to state-of-the-art methods.

Abstract Image

ResGAT:用于分子特性预测的残差图注意网络
分子性质预测是药物发现过程中的一个重要步骤。目前已开发出许多计算方法来预测各种分子性质。虽然最近的方法取得了可喜的成果,但没有一种架构能全面解决所有任务,这使得这一领域始终充满挑战,需要花费大量的时间和精力。除了用于常规数据的传统机器学习和深度学习架构外,还为图结构数据设计了几种深度学习架构,以克服传统方法的局限性。在定量结构-活性关系(QSAR)建模中利用图结构数据可以使模型有效地提取独特的特征,尤其是在连接性信息至关重要的情况下。在我们的研究中,我们开发了残差图注意网络(ResGAT),这是一种针对分子图结构数据的深度学习架构。该架构结合了图注意力网络和捷径连接,可同时解决回归和分类问题。它还可以定制,以适应各种数据集规模,从而增强基于分子模式的学习过程。在九个基准分子数据集上使用随机和支架采样策略进行多次测试后,使用 ResGAT 开发的 QSAR 模型与最先进的方法相比,表现出了稳定性和竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Memetic Computing
Memetic Computing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍: Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems. The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics: Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search. Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand. Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信