Ill-posedness for the gCH-mCH equation in Besov spaces

Yanghai Yu, Hui Wang
{"title":"Ill-posedness for the gCH-mCH equation in Besov spaces","authors":"Yanghai Yu, Hui Wang","doi":"10.1007/s00605-024-02002-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the Cauchy problem to the generalized Fokas–Qiao–Xia–Li/generalized Camassa–Holm-modified Camassa–Holm (gFQXL/gCH-mCH) equation, which includes the Camassa–Holm equation, the generalized Camassa–Holm equation, the Novikov equation, the Fokas–Olver–Rosenau–Qiao/Modified Camassa–Holm equation and the Fokas–Qiao–Xia–Li/Camassa–Holm-modified Camassa–Holm equation. We prove the ill-posedness for the Cauchy problem of the gFQXL/gCH-mCH equation in <span>\\(B^s_{p,\\infty }\\)</span> with <span>\\(s&gt;\\max \\{2+1/p, 5/2\\}\\)</span> and <span>\\(1\\le p\\le \\infty \\)</span> in the sense that the solution map to this equation starting from <span>\\(u_0\\)</span> is discontinuous at <span>\\(t = 0\\)</span> in the metric of <span>\\(B^s_{p,\\infty }\\)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-02002-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the Cauchy problem to the generalized Fokas–Qiao–Xia–Li/generalized Camassa–Holm-modified Camassa–Holm (gFQXL/gCH-mCH) equation, which includes the Camassa–Holm equation, the generalized Camassa–Holm equation, the Novikov equation, the Fokas–Olver–Rosenau–Qiao/Modified Camassa–Holm equation and the Fokas–Qiao–Xia–Li/Camassa–Holm-modified Camassa–Holm equation. We prove the ill-posedness for the Cauchy problem of the gFQXL/gCH-mCH equation in \(B^s_{p,\infty }\) with \(s>\max \{2+1/p, 5/2\}\) and \(1\le p\le \infty \) in the sense that the solution map to this equation starting from \(u_0\) is discontinuous at \(t = 0\) in the metric of \(B^s_{p,\infty }\).

贝索夫空间中 gCH-mCH 方程的非问题性
本文考虑广义福卡斯-乔-夏-李/广义卡马萨-霍尔姆-修正卡马萨-霍尔姆(gFQXL/gCH-mCH)方程的考奇问题,其中包括卡马萨-霍尔姆方程、广义卡马萨-霍尔姆方程、诺维科夫方程、福卡斯-奥维尔-罗森瑙-乔/修正卡马萨-霍尔姆方程和福卡斯-乔-夏-李/卡马萨-霍尔姆修正卡马萨-霍尔姆方程。我们证明了在\(B^s_{p,\infty }\) with \(s>;\max \{2+1/p, 5/2\}\) and\(1\le p\le \infty \)在这个意义上,这个方程从 \(u_0\) 开始的解映射在 \(t = 0\) 时在\(B^s_{p,\infty }\) 的度量中是不连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信