{"title":"Ill-posedness for the gCH-mCH equation in Besov spaces","authors":"Yanghai Yu, Hui Wang","doi":"10.1007/s00605-024-02002-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the Cauchy problem to the generalized Fokas–Qiao–Xia–Li/generalized Camassa–Holm-modified Camassa–Holm (gFQXL/gCH-mCH) equation, which includes the Camassa–Holm equation, the generalized Camassa–Holm equation, the Novikov equation, the Fokas–Olver–Rosenau–Qiao/Modified Camassa–Holm equation and the Fokas–Qiao–Xia–Li/Camassa–Holm-modified Camassa–Holm equation. We prove the ill-posedness for the Cauchy problem of the gFQXL/gCH-mCH equation in <span>\\(B^s_{p,\\infty }\\)</span> with <span>\\(s>\\max \\{2+1/p, 5/2\\}\\)</span> and <span>\\(1\\le p\\le \\infty \\)</span> in the sense that the solution map to this equation starting from <span>\\(u_0\\)</span> is discontinuous at <span>\\(t = 0\\)</span> in the metric of <span>\\(B^s_{p,\\infty }\\)</span>.</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-02002-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the Cauchy problem to the generalized Fokas–Qiao–Xia–Li/generalized Camassa–Holm-modified Camassa–Holm (gFQXL/gCH-mCH) equation, which includes the Camassa–Holm equation, the generalized Camassa–Holm equation, the Novikov equation, the Fokas–Olver–Rosenau–Qiao/Modified Camassa–Holm equation and the Fokas–Qiao–Xia–Li/Camassa–Holm-modified Camassa–Holm equation. We prove the ill-posedness for the Cauchy problem of the gFQXL/gCH-mCH equation in \(B^s_{p,\infty }\) with \(s>\max \{2+1/p, 5/2\}\) and \(1\le p\le \infty \) in the sense that the solution map to this equation starting from \(u_0\) is discontinuous at \(t = 0\) in the metric of \(B^s_{p,\infty }\).